
Atitudes Surrounding an Imperfect AI Autograder 
Silas Hsu

∗  

Tifany
∗ Wenting Li  

Both authors contributed equally to this research. 

Zhilin Zhang Max Fowler 
zhilinz2@illinois.edu mfowler5@illinois.edu 

silash2@illinois.edu Department of Computer Science, Department of Computer Science, 

wenting7@illinois.edu University of Illinois at University of Illinois at 

Department of Computer Science, Urbana-Champaign, United States Urbana-Champaign, United States 

University of Illinois at 
Urbana-Champaign, United States 

Craig Zilles 
zilles@illinois.edu 

Department of Computer Science, 
University of Illinois at 

Urbana-Champaign, United States 

Karrie Karahalios 

Department of Computer Science, 
University of Illinois at 

Urbana-Champaign, United States 

ABSTRACT 
Deployment of AI assessment tools in education is widespread, 
but work on students’ interactions and attitudes towards imperfect 
autograders is comparatively lacking. This paper presents students’ 
perceptions surrounding a ∼90% accurate automated short-answer 
grader that determined homework and exam credit in a college-
level computer science course. Using surveys and interviews, we 
investigated students’ knowledge about the autograder and their 
attitudes. 

We observed that misalignment between folk theories about how 
the autograder worked and how it actually worked could lead to 
suboptimal answer construction strategies. Students overestimated 
the autograder’s probability of marking correct answers as wrong, 
and estimates of this probability were associated with dissatisfac-
tion and perceptions of unfairness. Many participants expressed a 
need for additional instruction on how to cater to the autograder. 
From these fndings, we propose guidelines for incorporating im-

perfect short answer autograders into classroom in a manner that 
is considerate of students’ needs. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI; 
Natural language interfaces; • Applied computing → Interac-
tive learning environments; • Computing methodologies → 
Natural language processing. 
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1 INTRODUCTION 
Computers have been used to automatically assess and grade stu-
dents’ programming assignments since the 1960s [23]. Today, com-

puters assess students in various situations, from grading multiple-

choice questions, to evaluating formulas in mathematics homework 
[29], to providing feedback on essays [27]. As class sizes increase, 
automatic grading increasingly contributes to savings in human 
labor and timely feedback [3, 27, 29, 55]. 

In the past two decades, AI-powered autograders that grade 
natural language responses to short-answer questions and essay 
prompts have gained prominence [10, 48, 53]. Natural language 
processing (NLP) autograders have been deployed both in K-12 
settings [34, 54] and standardized high-stakes settings including 
the Graduate Record Examinations (GRE) in the US [2]. Modern 
systems that automatically evaluate student writing have a high 
agreement with human raters [2, 9, 47], yet this has not resolved 
all controversy related to their deployment [8, 12, 14, 50]. 

Outside of the education domain, research has shown how al-
gorithms’ imperfections and diferences from human judgement 
may result in trust and acceptance issues [17, 33, 36], but we know 
less about how students interact with and perceive imperfect AI 
autograders. Forming guidelines on how to manage students’ and 
teachers’ perceived accuracy, fairness, educational value, and other 
attitudes towards NLP autograders will be key to further adoption 
of these systems. In other words, as Williamson et al. states [55], 
researchers should no longer focus on “can it be done?” but “how 
should it be done?” We tackle this question in the context of auto-
mated short answer grading (ASAG). To the best of our knowledge, 
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we are the frst to investigate students’ perceptions of ASAG sys-
tem functionality (e.g., accuracy, fairness, educational value) and 
how students cater their answers to autograders, which could af-
fect the assessments’ validity. Moreover, the automated classroom 
ecosystem lacks guidelines or good practices for using AI to assess 
free-form responses. 

This paper presents a mixed-methods study (surveys + inter-
views) of students’ interactions with an ASAG system used on home-

work and exams in a full-semester introductory college computer 
science course. The ASAG system specifcally graded responses to 
code reading questions. These are questions that require students 
to explain a piece of code in plain English. Points awarded by the 
algorithm mattered; they contributed to students’ fnal grades. At 
the same time, the algorithm’s false positive and false negative rates 
were 15% and 10%, respectively. The automated system marked a 
non-trivial number of students’ correct responses incorrect, and 
vice versa. This course provided an authentic setting to investigate 
student attitudes and fnd better ways to incorporate imperfect 
autograders into the classroom. 

Our frst major contribution is interview and statistical evi-
dence for what afects students’ perceptions of fairness, educational 
value, and satisfaction in the context of an imperfect AI autograder. 
We show that the perceived probability of correct answers being 
marked incorrect (false negatives) was statistically associated with 
dissatisfaction and perceptions of unfairness; at the same time, 
participants broadly overestimated the chance of false negatives. 
In contrast, many participants had not considered the possibility 
of incorrect answers graded as correct (false positives), yet they 
perceived the existence of FPs as unfair and harmful to learning. 

Second, we extend prior work of folk theories in social-technical 
systems to ASAG systems, and fnd that misalignment between 
folk theories about how the autograder worked and how it actually 
worked could lead to suboptimal answer construction strategies. 

Third, we propose guidelines for incorporating imperfect short 
answer autograders into classrooms in a manner that is consider-
ate of students’ needs. Based on our fndings, we propose that (1) 
transparency may improve students’ attitudes and help students 
form folk theories that lead to more efective strategies for con-
structing answers; and (2) instructors should emphasize practice in 
low-stakes environments and carefully design error and attitude 
mitigation strategies in high-stakes environments. 

2 RELATED WORK 
This work sits at the intersection of multiple felds: computer sci-
ence education, automated grading of natural language, and human-

AI interaction. We give a brief overview of related work in each 
respective area. 

2.1 Explain in plain English (code reading) 
problems 

The short-answer problems that are the focus of this paper are 
categorized as Explain in Plain English (EiPE) problems in the 
computer science education literature. Note that in general, EiPE 
and automatic short answer grading (ASAG) are separate concepts 
– EiPE problems do not necessarily have to be autograded. In this 
paper, we use “code reading problems” to refer to the AI-autograded 

EiPE problems under study, because the problems asked students to 
read and explain code and the instructor used the term to introduce 
this type of problem to students. 

While a full discussion of the theory and evidence behind the 
teaching efectiveness of EiPE problems is beyond the scope of this 
paper, code reading is believed to be a developmental skill that 
precedes code writing [38] and previous research has found that 
performance on EiPE problems predicts performance on code writ-
ing problems [40, 42]. In order to implement code reading problems 
in a class of 600 students, the instructor, a co-author of this paper, 
deployed a system to autograde EiPE problems. 

2.2 Automatic assessment of natural language 
Two major categories of automated natural language assessment 
stand out: automatic short answer grading (ASAG) and automatic 
writing evaluation (AWE). ASAG systems, like the one we inves-
tigate in this work, decide if the content in a short answer is ob-
jectively correct [10, 34]. In contrast, AWE systems focus on the 
writing and rhetorical quality of longer responses and essays but 
less so on the factual accuracy of content [2, 10]. Both types of sys-
tems are considered potential solutions for reducing the burden of 
grading large classes and assist student learning with instantaneous 
feedback [27, 55]. 

Both ASAG and AWE have been applied in classroom and high-
stakes standardized test settings. ASAG’s classroom deployments 
include subjects such as computer science, biology, psychology, 
physics, math, and reading [3, 4, 18, 31, 49, 54]. AWE has been de-
ployed in primary, secondary, and higher education settings to help 
students improve their general essay-writing skills [27, 43, 51, 56]. 
In high-stakes settings, AWE systems appear in the standardized 
tests administered by states in the United States [50] and tests ad-
ministered by ETS (known for the GRE and TOEFL) [11]. c-Rater, 
an ASAG system, was used to evaluate constructed-response math 
reasoning in the 2002 NAEP ICT Science test and reading compre-

hension items in Indiana’s 2002 11th grade English End of Course 
Assessment [34]. 

2.3 Stakeholder perceptions of ASAG and AWE 
Both ASAG systems and AWE systems have achieved reasonably 
high agreement with human graders [2, 9, 47], yet concerns still 
exist regarding fairness, cheating, technical issues, and validity 
[12, 14, 27, 50]. As a result, students’ and teachers’ attitudes to 
these systems are critical to further adoption. 

There are a few studies related to students’ and instructors’ 
perceptions towards AWE systems. In a study of a middle school de-
ployment of an AWE system, Grimes and Warschauer found mixed 
perceptions among students and teachers. Many students and teach-
ers noticed errors and unreliability in the system, but at the same 
time teachers found benefts related to classroom management 
and encouraging revision [27]. Curran, Draus, and Maruschock 
surveyed college students and found most preferred human essay 
grading over computer essay grading, with somewhat more accep-
tance for computer-given feedback; notably, the survey did not ask 
about any personal experiences with any particular AWE system 
[13]. Roscoe et al. found that both the manner in which an AWE 
system was depicted before use and students’ frst-hand experience 



Atitudes Surrounding an Imperfect AI Autograder CHI ’21, May 8–13, 2021, Yokohama, Japan 

with the system afected their future willingness to use the system 
[45]. 

To our knowledge, there is very little work studying users’ per-
ceptions of ASAG systems. In a “no-stakes” application of a very-
short-answer (four or fewer words) autograder in a medical exam, 
Sam et al. found positive student perceptions of the assessment’s 
value [46]. The only other relevant work we are aware of is that of 
Azad et al. [5], which found that students perceived code reading 
questions that were graded by an ASAG system as less reliably 
graded than other types of exam questions; however, they did not 
investigate why. Given the lack of research on attitudes or presence 
of best practices for using ASAG, our study aims to explore this 
topic from students’ authentic classroom experiences. 

2.4 Human-AI interaction 
Our work contributes to a growing body of literature about peoples’ 
interactions with algorithmic systems. We review three major topics 
related to peoples’ attitudes: folk theories, what afects trust in 
algorithms, and concerns about the fairness of algorithms. 

2.4.1 Folk theories and mental models. Folk theories describe in-
tuitive, causal explanations about a systems’ functionality that 
develop among non-professionals based on frst-hand experiences 
and circulate informally [20]. They can difer signifcantly from 
what is correct or accurate, but even “incorrect” theories can prove 
useful. For example, in Kempton’s study of home thermostats [30], 
people used the Feedback Theory, which posits that the thermostat 
acts as a switch that turns on/of to maintain a target temperature, 
or the Valve Theory, which posits that the thermostat controls the 
strength or air fow of the heating/cooling system. While experts 
consider the Feedback Theory essentially correct, the Valve Theory 
could still produce advantages, such as encouraging energy savings. 

Besides thermostats, researchers have described how folk theo-
ries drive interactions in algorithmic socio-technical systems. Es-
lami et al. discovered folk theories explained users’ actions (or lack 
thereof) to try to coax Facebook into prioritizing desired content 
[20]. Another study by Eslami et al. found folk theories drove action 
on Yelp, where users wrote reviews to cater to how they thought 
Yelp’s review fltering algorithm worked [21]. 

In addition, there is evidence that folk theories can afect people’s 
attitudes towards the algorithms and the platforms on which they 
are used. After a (false) report that Twitter was going to change 
its feed curation algorithms, DeVito et al. found that folk theories 
about said algorithm framed users’ tweets of dissatisfaction [16]. 
Ur et al.’s study of online advertising found that most participants 
overestimated the amount of information that trackers collected, 
and found privacy concerns drove lower acceptance of online be-
havioral advertising [52]. 

We expand the study of folk theories surrounding algorithmic 
systems to AI autograders. Similar to how folk theories inform how 
users cater to social media algorithms, we expect folk theories to 
inform strategies for constructing answers or even “gaming” the 
system. This, in turn has implications on how well AI grading elicits 
knowledge. Thus, we ask the following research questions: 

• RQ1: What folk theories do students form around the code 
reading question grading process? 

• RQ2: How do folk theories relate to students’ strategies 
when constructing answers to code reading questions? 

2.4.2 Trust. In the context of automated systems, Lee and See 
defned trust as “the attitude that an agent will help achieve an 
individual’s goals in a situation characterized by uncertainty and 
vulnerability” [35]. Trust in automated systems is fragile: studies 
by Dzindolet et al. [19] and Dietvorst et al. [17] have found that 
people quickly lose trust in algorithmic predictions after seeing 
mistakes, even when the systems outperform humans – a phenom-

enon known as algorithm aversion. Low levels of trust contributes 
to system disuse, but over-trust, leading to dangerous overreliance 
on or failure to monitor automated systems, has been observed too 
[19, 44]. For example, Eastern Flight 401 crashed because the crew 
failed to notice the autopilot was disengaged [44]. 

For AWE, over-trusting has prevented instructors and students 
from noticing inaccurate scoring [27]. On the side of low trust, 
Roscoe et al. found that students who were unwilling to continue 
using an AWE system reported lower perceived scoring accuracy 
(i.e. trust the system would give accurate scores) [45]. These results 
suggest that trust will be an important factor in the deployment of 
ASAG systems as well. 

Finding ways to manage trust, especially with transparency, has 
received much attention. Merely stating a system’s accuracy ap-
pears to have limited efectiveness, as Yin et al. found that trust 
is more tied to a users’ personal experiences with a system [58]. 
Adding transparency into an algorithm’s operation can infuence 
trust in nonlinear and context-dependent ways. Dzindolet et al. 
found that giving an explanation for why errors might happen 
prior to use of a system increased trust, but potentially to an unwar-
ranted level [19]. Kocielnik et al. found that when users interacted 
with a very inaccurate AI (that found appointments in emails), trans-
parency improved system acceptance, but only when the system 
was optimized for high precision [33]. In an educational setting, 
Kizilcec varied transparency levels in a system that automatically 
compensated for peer grading bias in a high-stakes college class 
assignment. When students’ expectations were negatively violated, 
either giving too little or too much explanation resulted in lower 
trust [32]. 

However, little work has studied ways to manage trust with 
imperfect ASAG systems. Forming guidelines for trust management 
will involve measuring trust and understanding what factors impact 
it. In this work, we examine accuracy perception, or the level of 
confdence that the autograder will grade responses correctly, and 
compare it against the actual system accuracy as a measure of trust. 
To explore this alignment, we ask: 

• RQ3: What explains students’ perceptions of autograding 
accuracy on code reading questions? 

2.4.3 Fairness. A system discriminates unfairly if it systemically 
“denies an opportunity or a good or if it assigns an undesirable 
outcome to an individual or group of individuals on grounds that 
are unreasonable or inappropriate” [25]. Based on the literature, we 
succinctly summarize fairness as “judgement based only on relevant 
characteristics.” Incidents and discoveries of algorithmic bias have 
been numerous [57], and ensuring fairness has been argued as a 
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concern deserving signifcant attention [25], including in automatic 
grading systems [55]. 

Woodruf et al. noted that participants who learned for the frst 
time about algorithm unfairness in products from a trusted com-

pany felt betrayal, anger, and disappointment that led to a distrust of 
that company [57]. In the context of education, grades signifcantly 
afect students and they care greatly about fairness in the way 
grades are assigned [32]. There has been work assessing whether 
the ratings given by AWE systems had group or individual biases 
compared to human graders, such as by Bridgeman et al. [8], but 
there is very little work assessing what biases students perceive in 
grading algorithms. To add knowledge to the existing body of work 
on fairness, we ask the following research question: 

• RQ4: What explains students’ perceptions of fairness to-
wards code reading questions? 

2.5 Other attitude measures 
Our study includes three more measures of students’ attitudes that 
intuitively relate to autograder acceptance. First, because learning 
is the fundamental goal of implementing code reading questions, 
we ask: 

• RQ5: What explains students’ perceptions of the educa-
tional/learning value of code reading questions? 

Finally, we ask about students’ satisfaction of and feedback for 
the algorithm and policies surrounding the code reading questions: 

• RQ6: What explains students’ satisfaction towards code read-
ing questions? 

• RQ7: What kind of feedback and desired improvements do 
students have for the algorithm or policies surrounding code 
reading questions? 

3 METHODS 
First, we describe the autograder that students interacted with, 
and how it was presented and used. Next, we introduce the IRB-
approved survey and interview that investigated students’ interac-
tions with the autograder. 

3.1 Development and incorporation of the 
autograder 

The automatic grading system that we study was developed for 
educational purposes and used in the Spring 2020 semester of the 
introductory computer science course for non-majors at our insti-
tution. Approximately 600 students enrolled in this course, which 
aimed to introduce basic principles of programming in both Python 
and Excel to people without prior programming experience. 

All homework and exams were computerized and included code 
reading (EiPE) problems which asked students to write a short, high-
level, English description of what a block of Python code achieved 
(Figure 1). Upon submission of an answer on a code reading prob-
lem, the system provided students with feedback on whether the 
answer was correct and sample exemplar solutions. This informa-

tion appeared on both homework and exams. For more complicated 
EiPE questions later in the course, the solution also contained a vi-
sual explanation which highlighted common programming idioms 

and guided students in their understanding of the correct answers 
provided. 

Figure 1: Screenshot of a code reading problem prompt (A) 
and feedback after a student submits an answer (B) 

3.1.1 Development and training. The autograder discussed here 
was developed iteratively from Fall 2019 onward, and is simpler 
than state-of-the-art ASAG. Here we discuss the most salient de-
tails of its implementation, but a full description can be found 
elsewhere [24]. The autograder used a logistic regression on bi-
gram and bag-of-word features. Logistic regression was selected 
for its interpretability, easy customization of false positive/negative 
rates, and satisfactory accuracy among quickly prototyped models. 

The computer preprocessed answers to minimize the impact of 
non-word symbols and spelling mistakes, and used a simple garbage 
fltering routine to discourage low-efort system gaming. Prepro-
cessing did not apply stop word fltering, stemming, or lemmatiza-

tion. 
Training sets for each question consisted of manually-graded 

students’ answers from the Fall 2019 semester deployment of code 
reading questions. Trained members of the instructor’s research 
team labeled the training data in a rigorous process. For each ques-
tion, the bag-of-words and bigram features were selected indepen-
dently during training. 

The instructor had tuned the autograder to err more on the 
side of false positives because they considered false negatives (i.e. 
correct answers graded as incorrect) more harmful to the course, 
resulting in a 10% FN rate and 15% FP rate. FNs were often caused by 
answers with conficting words (for example, “returns whether x is 
odd or even” has both “odd” and “even”) and valid words that were 
rare in the training set [24]. FPs were often caused by incorrect 
information that did not have negative weights, or long-distance 
dependencies that bigrams cannot catch, e.g., an early “not” could 
fip an answer’s meaning [24]. Despite these imperfections, the 
instructor considered the error rates “good enough” for deployment 
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because of (1) the ability to mitigate errors in high-stake settings 
via manual grading and appeals, (2) comparable accuracy to human 
TAs [24], and (3) the autograder’s immediate feedback enabled 
students to practice EiPE questions when otherwise impossible. 

3.1.2 Portrayal, use, and policies. The instructor introduced code 
reading problems and their grading process as a system with good 
accuracy but lingering imperfections. The following is an annotated 
transcript from the lecture in which homework-based code reading 
problems were introduced: 

instructor: Code reading questions. You have to 
do it a couple times. [They bring up an example on 

the computer, and paraphrase the directions.] Tell me in 
English what this piece of code does. [They type and 

submit an obviously incorrect answer as a demonstration.] 
“This makes me happy” turns out to not be the 
correct answer. [They type and submit another answer.] 
“It multiplies two numbers together.” And that is 
in fact the correct answer. 

instructor: It uses NLP. Its not bulletproof, but 
its pretty good. If you encounter something you 
think is correct but its not grading it, please re-
port it because we can take that example and use 
it to improve the algorithm. 

There were some diferences in the deployment of the autograder 
on homework versus exams. On homework assignments, students 
had unlimited attempts to get credit and received no penalties for 
incorrect submissions. On exams, students had only one attempt, as 
past experience showed that allowing multiple attempts resulted in 
an large increase of false positives but only a small decrease in false 
negatives [5]. The autograder on the exams still provided immediate 
feedback on whether an answer was correct and exemplar answers 
as it did on the homework. 

Students could click a button that started a manual appeal process 
if they felt the autograder had made an error; they could also post 
questions and concerns on the course forum. However, an unan-
nounced policy made appeals partially moot: course staf regraded 
all answers the autograder marked incorrect on exams, regardless 
of whether a student appealed. Staf also checked answers the auto-
grader marked correct on exams to obtain false positive rates, but 
points already awarded by the autograder were never taken away. 

Finally, code reading questions on the third midterm exam, the 
last midterm before the fnal exam, operated diferently than all the 
other exams. As the models for code reading questions were not yet 
ready for that particular exam, the autograder informed students 
that their answers would be manually graded instead of graded by 
the autograder. When we collected data, some participants’ had 
most recently taken the third midterm, and some the fnal exam. 
After data collection we checked for evidence of recency biases and 
found no statistically signifcant diferences. 

3.2 Participant recruitment 
We conducted a mixed-methods (survey + interview) study about 
the system described above to answer our RQs. To recruit partic-
ipants, two days before the fnal exam, a course announcement 
invited all students to voluntarily participate in research about 

“attitudes towards the assessment methods” in the course1. This 
announcement recruited for our survey and interviews simultane-

ously, and it instructed interested students to choose one or the 
other. Later, we removed any interviewees that had also taken the 
survey. 

1
We intended to release the course announcement after the fnal exam; however, 

due to miscommunication, the course staf posted it two days before the fnal. We 
found no statistically signifcant diference in exam satisfaction rates between those 
that participated before and after the fnal exam, suggesting a small impact if any. 

3.3 Survey 
Students could complete the survey at any time before they received 
their fnal grades. 62 students took the survey, with a median time 
to completion of 570 seconds (mean=546 s and SD=211 s after re-
moving outliers). As compensation, we invited participants to enter 
a lottery in which one out of every ten participants would win a $10 
gift certifcate. 62 students completed the survey, and we removed 
13 participants (21%) who failed attention checks, leaving 49 partic-
ipants’ data for analysis. Of these participants, 38 responded to the 
survey before the fnal exam and 11 responded after. We designed 
the survey to answer RQ1 and RQs 3-6, and summarize the contents 
of the survey here; the supplementary materials contain the full 
survey. 

3.3.1 Part 1: folk theories (RQ1). To gather theories about how the 
grader worked, we asked an open-ended question worded “For code 
reading questions, what do you think happens between the time you 
submit your answer and the time you get feedback on that answer?” 

3.3.2 Part 2: atitudes (RQs 3-6). We surveyed the following per-
ceptions towards the code reading questions: accuracy, fairness, 
educational value, and satisfaction. Note that these measures should 
be interpreted as a holistic view of EiPE questions, the autograder’s 
quality, and the circumstances, portrayal, and policies associated 
with its use. The interviews, in contrast to the surveys, asked stu-
dents to explain their answers and aimed to tease apart these factors. 

We frst asked about perceived fairness. Since one common defni-
tion of fairness is “judgement based only on relevant characteristics,” 
we asked students to rate various questions’ ability to “accurately 
refect your knowledge of the concepts taught in the course.” Stu-
dents rated both code reading questions and the other types of 
assessments in the course for comparison: programming (i.e. code 
writing) problems, true/false questions, and multiple choice ques-
tions. 

We had two other measures of fairness [37]. For disparate treat-
ment between individuals, we asked for Likert agreement with 
“my answers for the code-reading question are graded in a similar 
manner as other students’ answers.” For disparate impact among 
subgroups, we asked for Likert agreement with “Some groups of stu-
dents may have an advantage in regard to code reading questions.” 
Those that had any level of agreement with that question were then 
asked an open-ended question about which specifc groups could 
have a (dis)advantage. 

Second, we evaluated satisfaction. Survey-takers rated their sat-
isfaction with code-reading questions on homework and exams 
respectively, each using a 5-point Likert scale. Students also re-
ported their satisfaction on the other types of course assessments 
to allow comparisons. 
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Next was accuracy perception, measured with four related but 
distinct aspects: positive predictive value (precision), negative pre-
dictive value, false negative rate, and false positive rate. We de-
scribed these aspects in plain English and asked participants to esti-
mate their likelihoods “especially thinking about the code-reading 
questions on homework.” The question emphasized homework as-
signments because students had more experience with code-reading 
questions on homework, especially with unlimited attempts. Pos-
sible responses were on a scale between 0% and 100%, with a step 
size of 10%. 

Finally, we measured perceptions of educational value using a 
7-point Likert agreement with “The code-reading questions helped 
me learn the material in the course”. We focused on the educational 
value for the homework but not the exams because the exams were 
summative. 

3.3.3 Part 3: explanatory factors and demographics. Finally, we mea-

sured four factors that could potentially explain variance or control 
for biases in the data: algorithm awareness, tech-savviness, self-
reported class performance, and gender. We assessed tech-savviness 
with a subset of the technology anxiety instrument validated by 
Meuter et al [41], and then constructed a tech-savviness score by 
coding the Likert responses as integers and summing. 

To our knowledge, a formally-validated instrument of algorithm 
awareness or literacy does not exist. Thus, we brainstormed seven 
statements about the existence of algorithms in a variety of acces-
sible scenarios with wide-ranging implications: social media feeds, 
online search, online advertising, deepfakes, and automated writing 
evaluation. When a participant’s Likert agreement with a statement 
(at least a slightly agree/disagree) aligned with actual algorithm 
existence, we termed the response “correct.” The number of correct 
responses constituted a participant’s algorithm awareness score. 

3.4 Interview 
All interviews took place via video conference in a two-week period 
after the fnal exam and before students received their fnal grades. 
We conducted 22 valid interviews; on average, interviews lasted 
46.5 minutes. Interviewees were compensated at a rate of $20/hr. 

Interviews were semi-structured. The frst two co-authors each 
interviewed about half the participants. To ensure consistency, both 
interviewers conducted the frst two interviews together, and ev-
ery few interviews they met to discuss revisions to the interview 
script and to document the wordings of follow-up questions. The 
interview broadly followed the structure as the survey; the supple-
mentary materials contain the full interview script. 

First, we gathered theories for how the autograder worked (RQ1) 
and asked about students’ answer construction strategies to an-
swer RQ2. Then, we asked questions about the fairness, the four 
aspects of accuracy, homework/test satisfaction, and educational 
value (RQs 3-6). When discussing fairness, we disclosed the exis-
tence of false positives and negatives to have a richer discussion 
and gather additional insights for RQ1. We did not do so in the sur-
vey. This disclosure had the potential to afect accuracy perceptions 
most; however, we performed one-sided Welch’s t-tests on accuracy 
perceptions between survey and interview participants and found 
no signifcant increases in false positive/negative rate perception 

among interviewees. During discussions of satisfaction and educa-
tional value, we additionally asked for feedback to improve these 
aspects (RQ7). Finally, interviewees completed an online form that 
contained the same measures as part 3 of the survey. 

3.5 Participant characteristics 
Looking at the combined data of survey and interview participants 
(total valid N=70), algorithm awareness and tech-savviness scores 
fell into normal distributions. Participants skewed towards better 
self-reported class performance (53% above average, 39% average, 
9% below average). Gender distribution skewed towards female 
(70% female, 30% male, 0% other) in contrast to the overall course 
enrollment (46% female, 54% male). In particular, about 80% of 
interviewees identifed as female and no interviewees reported 
below-average class performance. 

4 RESULTS 

4.1 Analysis 
4.1.1 Qalitative. We had valid data for 22 interviews. For our 
qualitative analysis, after transcription, we employed a grounded 
theory-like approach [39], where we used a refexive and iterative 
process to inductively generate themes that summarized interview 
topics. First, two members of the team performed independent 
thematic coding [26] for four diferent interviews each and then 
exchanged the coded interviews to review, resolving any diferences 
with discussion. Based on these eight interviews, a number that 
could achieve code saturation [28], we create an initial codebook 
which included over 80% of the codes in the fnal version. Each 
interview question had its own set of codes. 

The same two coders then resumed independent coding of the 
remaining interviews with the initial codebook using a deductive 
approach [22]. If there were statements that the initial codes could 
not cover, we updated existing codes or added new ones. Both 
coders reviewed changes to ensure necessity and accuracy. Codes 
achieved convergence by the end of the analysis. 

Lastly, we applied a semantic approach to iteratively refne and 
group the codes into higher-level themes [26]. We counted the 
occurrence frequency of each theme to inform reporting of results. 
However, we did not only consider frequency; we reported on any 
themes that added new insights to our RQs. 

4.1.2 Qantitative. We have a total of 70 participants for quantita-
tive analysis (49 surveys + 21 interviews), since one of the 22 inter-
viewees failed to submit their web-based questionnaire. Statistical 
power concerns necessitated combining survey and interview data. 
To make the data compatible, we converted fairness, educational 
value, and satisfaction measures in the survey to binary variables, 
and the frst two authors independently extracted these binarized 
attitudes from the interviews with a 97% inter-rater agreement. 

Statistical analysis involved six multiple regressions to explain 
variance among folk theories (RQ1) and the various measures of 
attitudes towards code reading questions (RQ3-6). The response 
variables for the regressions were (1) folk theory, (2) perceived false 
negative rate, (3) fairness perception, (4) educational value, and 
satisfaction on homework (5) and tests (6). 
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Table 1: Coefcients and p-values for the one OLS and fve logistic regressions ft using combined interview and survey data 
(N=70). Each row contains results for one regression, and columns contain predictor variables. Note that some response vari-
ables also function as predictor variables. Cells contain coefcients and their p-values separated by a slash; blank cells indicate 
a predictor was not used for that regression. Highlighting and asterisks emphasize the two coefcients with p-values that fell 
under the B-H procedure’s critical p-value of 0.012. 

Regression results: coefcients / p-values 

Response variable. 
Logistic regression for 
binary (B) variables, 
OLS for continuous (C) 
variables. 

# of algo 
awareness 
Qs correct 
(ordinal) 

Tech-
savviness 
score (ordi-
nal) 

Self-
reported 
class per-
formance 
is avg or 
below (B) 

Gender is 
male (B) 

Perceived 
FN rate (C) 

Perceived 
to be fair 
(B) 

Perceived 
to have 
edu value 
(B) 

Had keywords-related 
folk theory (B) 0.123/0.593 0.086/0.237 –1.525/0.021 0.261/0.714 
Perceived FN rate (C) –4.250/0.062 0.068/0.919 7.482/0.216 1.899/0.769 
Perceived to be fair (B) –0.473/0.034 0.050/0.427 –0.838/0.136 0.801/0.186 –0.036/0.005* 
Perceived to have edu 
value (B) –0.255/0.214 –0.110/0.072 –0.652/0.226 0.622/0.301 –0.026/0.026 
Satisfed on HW (B) –0.390/0.073 0.033/0.587 –0.613/0.253 0.175/0.759 –0.015/0.207 0.116/0.855 0.380/0.540 
Satisfed on tests (B) –0.572/0.034 0.029/0.706 –0.393/0.577 1.108/0.104 –0.041/0.001* 0.060/0.944 1.381/0.113 

We chose to only predict false negative rate since (1) perceived 
precision and false positive rates had little variation; (2) intervie-
wees had an easier time reasoning about and remembering false 
negatives than negative predictive value; and (3) the Pearson cor-
relation between negative predictive value and false negative rate 
was -0.504 (p < 0.001), suggesting similar information content of 
the two metrics. 

Each regression’s predictors included the participant character-
istics gathered from part 3 of surveys and interviews. In addition, 
we used other dependent measures as predictors where we a priori 
thought associations might reasonably occur; for example, we sus-
pected perceived false negative rate may afect satisfaction. Table 1 
summarizes these hypotheses, along with associations found to be 
signifcant (we detail the process for fnding signifcance below). 

The six regressions ft a total of 32 coefcients, not including 
intercepts. Due to the risk of Type I errors, we used the Benjamini-

Hochberg procedure [7] to control the false discovery rate, or the 
expected proportion of signifcant results that are false positives. 
The B-H procedure outputs a critical p-value, where all observed 
p-values under the critical p-value are considered statistically sig-
nifcant. 

Given the exploratory nature of this study and limited data, we 
chose a false discovery rate of Q=0.20 to provide suggestions for 
future investigation and not to defnitively identify any associations 
or their strength. Furthermore, we support signifcant associations 
with interview evidence. Two statistically signifcant regression 
coefcients fell under the critical p-value of p=0.012. 

4.2 Folk theories (RQ1) 
4.2.1 Overall grading process. We gathered 22 folk theory responses 
in the interview and 44 valid responses from the survey, after re-
moving four survey participants who said the grading was manually 
done and one that wrote they had no feedback. Five survey par-
ticipants said the autograder was an automatic process, providing 

no additional details. The rest of the participants shared the same 
theory of automated matching to exemplar answers or words. We 
named three variations of this theory, each providing more detail 
than the last: 

• General Matching: this theory stated that the autograder 
compared students’ responses to the correct response(s), 
without specifcs on the exact similarity metric or its compu-

tation. A total of nine survey participants (20.45%) and one 
interviewee (4.55%) reported this theory. 

• Keyword Matching: a conjecture that the algorithm checked 
if a set of important words existed in an answer, but did not 
provide additional detail about the process. There were 29 
survey participants (65.91%) and eight interviewees (36.36%) 
with this theory. 

• Keyword Matching with Details: same as the Keyword 
Matching theory, but with at least one additional detail, 
which we list below. 13 interviewees (59.10%) and no survey 
participants used this theory, possibly because open-ended 
survey responses tend to be less detailed in general. 

Possible details for the Keyword Matching with Details theory 
based on the interview responses included: 

• Needs enough matches: Seven participants (31.82%) men-

tioned an answer was graded as correct only when “enough 
of your words match,” or the autograder used “a certain cut-
of percentage” to determine if enough of the words match 
the answer key. The autograder’s logistic regression indeed 
used a decision threshold. 

• Covers a range of expressions: Seven participants (31.82%) 
suggested that the autograder accepted a variety of ways to 
frame an answer, such as using words “in diferent order[s]” 
or with “diferent connectives,” but four of them doubted it 
could cover all possible answers. 
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• Matches sequence of words: Three participants (13.64%) 
thought the autograder matched “certain phrases” or words 
“in certain orders” in addition to or instead of individual 
words, which aligned with the bigram features the algorithm 
actually used. 

• Uses machine learning: Three participants (13.64%) used 
the phrase “machine learning.” 

• Uses past answers: One participant (4.55%) mentioned the 
autograder “compared it [students’ answers] to past answers,” 
which aligned with the actual development process that used 
answers from past students. 

• Penalizes unwanted expressions: One participant (4.55%) 
articulated the possibility that the algorithm penalized cer-
tain expressions because “that’s not what they want.” The au-
tograder indeed assigned negative weights to certain words 
and phrases. 

Over 75% of all the participants held a keyword-related theory. 
Few participants’ responses contained the more nuanced concepts, 
such as the use of bigrams (sequence of words), past answers, and 
negative weights (unwanted expressions). 

4.2.2 False negatives and positives. Interviewees had various ex-
planations for the presence of false negatives and positives. Since 
all but one interviewee used a keywords-related theory, these ex-
planations tended to be framed with that in mind. 

The most popular explanation for false negatives (correct an-
swers marked incorrect), used by eight students (36.36%), stated 
the autograder did not or could not exhaustively cover all correct 
keywords, expressions, or perspectives: 

I feel like maybe the people who designed the answers 
to that question might not have actually thought from 
a diferent perspective that a student might have. And 
then, those keywords might have been left out. (P-ID=32) 

But these explanations almost always failed to consider the large 
number of past answers that comprised the training data. However, 
there was some merit to this explanation, according to the instruc-
tor’s research team: uncommon wordings such as “largest variable” 
instead of “largest number” could indeed cause false negatives. 

Other explanations for false negatives that each comprised less 
than 20% of participants included too “strict” of a decision threshold 
and misspelled words. Lastly, two participants (9.10%) blamed tech-
nical issues or bugs and four (18.18%) had no cohesive explanation. 

As for false positives (wrong answers graded as correct), four 
participants (18.18%) could not think of any reasons at all, and 
two (9.10%) blamed technical issues. In the remaining interviewees, 
11 (50%) participants reasoned that answers with the correct key-
words but the wrong meaning as a whole caused false positives. 
Some of them provided more details, such as keywords in an in-
correct order (N=2, 9.10%), or answers containing both correct and 
incorrect information (N=1, 4.55%). The instructor confrmed these 
possibilities. 

The above theories imply some interpretability contained in re-
sponses, but some participants (N=3, 13.64%) suspected that the 
system could grade agglomerations of keywords incoherent to hu-
mans as correct, i.e. cheating or gaming the system. When we asked 
participants about the prevalence of system gaming, 15 (68.18%) 

expressed it would likely involve at least the same amount of efort 
as responding to the questions legitimately, and no one reported 
instances of successful gaming. 

4.2.3 Folk theory formation. Around 60% (N=13) of the intervie-
wees stated their theories originated from frst-hand experience 
with the autograder’s grading behavior and by comparing their 
submitted answers to the sample exemplar answers contained in 
the feedback. Exemplar answers could function as key signals of 
what styles of answers to write and not to write, especially when 
students thought they experienced false negatives (N=4, 18.18%). 
And, participants (N=4, 18.18%) explained how they identifed pat-
terns from exemplar answers to inform the Keyword Matching 
theory: 

I think that in the example that they give to you after 
you fnish answering the question in the practice, most 
of them contain the same few like keywords that indi-
cate what this code is trying to accomplish. (P-ID=35) 

Four interviewees (18.18%) used logical reasoning to arrive at 
a keyword-related theory. The reasoning process could be quite 
diferent across students. For example, one student reasoned that 
the large variety of possible answers required the autograder’s de-
signers to extract what was common to the answers: the keywords. 
Another student started with the opposite premise, arguing that 
only a limited number of answers existed for any basic coding idea, 
and so any correct response must share some of the keywords with 
the answer keys. 

Finally, one participant (4.55%) mentioned that they used instruc-
tor statements and course information to inform their theory. For 
this participant, the instructor’s mention of NLP during lecture 
confrmed their suspicion that the autograder relied on machine 
learning. For our other participants, it is possible that they did 
not know what “NLP” meant, which reduced the infuence of the 
instructor’s statements. 

4.3 Answer construction strategies (RQ2) 
In this section, we discuss strategies our interview participants 
used to construct answers to code reading problems. Participants 
generally formed and refned answer construction strategies for 
code reading questions via trial and error over the semester con-
currently with folk theory formation. 13 interviewees (59.10%) said 
they learned to cater their answers to the autograder by imitating 
the exemplar answers from the feedback and fnding patterns in 
what kinds of answers worked. More specifcally, nine participants 
(40.91%) said they had learned the patterns for translating common 
programming paradigms and control structures from code into 
plain English patterns. 

The Keyword Matching theory strongly informed participants’ 
strategies. Half of the participants (N=11, 50%) thought the auto-
grader preferred technical terms learned in class over vernacular 
– for instance, preferring “concatenate” over “combine words.” Of-
ten times participants thought the autograder looked for a rather 
limited set of keywords, so they tried to imitate the writing style 
and sentence structure of the exemplar answers to increase the per-
ceived chance that the algorithm would be looking for their words. 
A few participants (N=4, 18.18%) tried to memorize the exemplar 
answers or the keywords on homework problems so that they could 
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get those problems correct if they encountered the same or similar 
questions again. 

One interviewee’s folk theory led to a suboptimal strategy. This 
student thought the autograder used a threshold, and reported 
writing long answers to capture as many keywords as possible to 
pass the threshold. However, the student was not aware that the 
grading algorithm weighed some words negatively and that longer 
answers correlated with lower autograder scores in most cases. As a 
result, this strategy could have harmed the student by introducing 
unwanted keywords into their answers. The student noted that 
their strategy was only sometimes successful. 

In summary, participants formed their answering strategy grad-
ually, often by leveraging their folk theories and learning from the 
exemplar answers. Misalignment between folk theories about how 
the autograder worked and how it actually worked could lead to 
suboptimal answer construction strategies. 
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Figure 2: Students’ accuracy perceptions of the autograder, 
with respect to positive predictive value, negative predictive 
value, false negative rate and false positive rate from top to 
bottom. It shows data from both the survey and interviews 
(combined N=70). The system’s actual performance is anno-
tated with an orange line, located at 76%, 94%, 10%, and 15% 
respectively. In contrast, means of student estimates were 
85%, 55%, 48%, and 17% respectively. 

4.4 Perceptions of accuracy (RQ3) 
Figure 2 shows histograms of survey and interview participants’ 
accuracy perceptions of the autograder, with the system’s actual 
performance annotated with an orange line. About 30% (N=15) 

of the participants responded with a false positive rate of zero, 
implying they thought false positives were nonexistent or near-
nonexistent. On the other hand, participants tended to overestimate 
the chances that correct answers would be marked wrong (false 
negatives) – as the middle two plots show, most were quite far from 
the orange line. Contrary to how the autograder actually performed, 
90% of the students thought false negatives happened more often 
than false positives. 

Most interviewees (N=19, 86.30%) said they had not considered 
the possibility of false positives at all. One participant reported 
having personal experience with false positives, and no one had 
heard of it happening from others. A few interviewees (N=3, 13.64%) 
said they estimated a 10% false positive rate because we told them 
the existence of false positives, but as discussed before, this did not 
result in noticeably diferent false positive estimates compared to 
survey participants. 

One of the most common reasons for interviewees to estimate a 
high false negative rate, mentioned by seven interviewees (31.82%), 
was they thought they had multiple encounters with false negatives. 
Another common infuence was hearing about false negatives from 
other students in the course frequently (N=7, 31.82%). 

In summary, students tended to overestimate false negative rates, 
and many underestimated false positive rates. Interviewees men-

tioned frst-hand experience and what they heard from other stu-
dents as key factors infuencing their estimates. 

4.5 Perceptions of fairness (RQ4) 
Figure 3 summarizes the survey data from our primary measure 
of fairness, based on the defnition of “judgement based only on 
relevant characteristics,” Survey takers on average thought that 
programming questions and multiple choice questions were fairer 
than code reading questions, and fairness perceptions for code 
reading questions were polarized. Logistic regression on the polarity 
of fairness perception using the combined survey and interview 
data found participants with higher false negative rate perception 
were statistically signifcantly more likely to say the autograder 
and its surrounding policies were unfair (p=0.005, coef=-0.036, 95% 
CI=[-0.062, -0.012]). 

We now turn to the interviews for more in-depth insights. False 
positives/negatives and the course’s appeal system emerged as ma-

jor drivers of perceptions of overall fairness. Around 70% of the 
interviewees (N=15) expressed discontent towards false negatives 
(correct answers graded as wrong), while fve of them (22.73%) 
explicitly mentioned them in why they thought the code reading 
questions inaccurately assessed their course-related knowledge. 
The course’s appeal policy mitigated these concerns to some extent: 
six participants (27.27%) expressed that false negatives frustrated 
and inconvenienced them, but the appeal process could ultimately 
resolve the errors. Another seven participants (31.82%) had neutral 
feelings towards false negatives, either because of the appeal pro-
cess, because they expected errors to happen in large courses, or 
because they only experienced them in a low-stake setting. 

When we elicited views about false positives, 13 participants 
(59.10%) expressed fairness concerns about non-knowledgeable 
students getting credit that they did not deserve. Unlike false neg-
atives, which appeals could mitigate, participants could not think 
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The scores I get on ___ accurately reflect my knowledge of the concepts taught in the course

Figure 3: Distribution of fairness ratings for each type of as-
sessment method in the course, measured by rating agree-
ment with the statement that “The scores I get on ___ ac-
curately refect my knowledge of the concepts taught in the 
course” where the blank contained “code reading questions”, 
“true/false questions,” “programming questions,” and “mul-
tiple choice questions” respectively. Ratings were based on 
a 7-point Likert scale – 1: Strongly disagree, 2: Disagree, 3: 
Somewhat disagree, 4: Neither agree nor disagree, 5: Some-
what agree, 6: Agree, 7: Strongly agree. Survey data only 
(N=49). Survey takers on average thought that programming 
questions and multiple choice questions were fairer than 
code reading questions, and fairness perceptions for code 
reading questions were polarized. 

of solutions to correct false positives, and they recognized that 
students had less incentive to report false positives (N=7, 31.82%). 
Besides this, six interviewees (27.27%) thought false positives could 
mislead students, thus impacting the educational value of code 
reading questions. 

We additionally asked on the survey and interview for subgroups 
of students that could be at an unfair dis(advantage) for code read-
ing questions. About 50% of the survey takers and all interviewees 
named at least one such subgroup. Participants felt concern to-
wards non-native English speakers most frequently (N=18, 25.3%); 
they felt that non-native speakers could be worse at constructing 
answers in English or fnding the right language to cater to the au-
tograder. Groups with advantages that participants named included 
those with prior experience with short answer autograders (N=2, 
2.82%), and students with prior experience in computer science 
(N=11, 15.49%), though many participants considered this advan-
tage fair. For our other measure of fairness, disparate treatment 
between individuals, fve out of 49 survey respondents disagreed 
that all students’ answers were graded in a similar manner, showing 
that students were less concerned about disparate treatment than 
disparate impact. 

In summary, participants were polarized on whether they thought 
the autograder and its use was fair. False negatives and positives 
impacted interviewees’ fairness perceptions, but the course’s appeal 
policy helped mitigate concerns about false negatives somewhat. 
Many students named a subgroup of students that they thought 
could possibly experience an unfair (dis)advantage. 

4.6 Perception of educational value (RQ5) 
We asked one question regarding educational value of code reading 
questions in the survey and the interview. Figure 4 summarizes 
the survey responses; about half of survey participants agreed to 

any extent that the code reading questions helped them learn the 
material in the course. 
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Figure 4: Distribution of perception of educational value 
surfaced by agreement with the statement that “The code 
reading questions have helped me learn the material in the 
class” on a 7-point Likert scale – 1: Strongly disagree, 2: Dis-
agree, 3: Somewhat disagree, 4: Neither agree nor disagree, 
5: Somewhat agree, 6: Agree, 7: Strongly agree. Survey data 
only (N=49). Perception of educational value was polarized. 

About half of the interviewees said unequivocally that code 
reading questions helped them learn, reporting that the questions 
helped them identify and fx weaknesses in their understanding 
of course concepts, and that they recognized the value of being 
able to read code and communicate its function. In contrast, ~25% 
of interviewees said code reading questions did help learning but 
also surfaced concerns, and the remaining ~25% of interviewees 
considered code reading questions unhelpful for learning. 

Interviewees mentioned several factors that negatively impacted 
their perceptions of educational value: false negatives/positives, 
the reliance on memorizing answers, and insufcient instruction 
(N = 4, 2, and 1 respectively; 18.18%, 9.10%, and 4.55% respectively). 

Besides educational value, we asked the interviewees about their 
willingness to use code reading questions with the same course 
policies if they hypothetically were to take the class again. Nine 
interviewees (40.91%) gave an afrmative answer, three of them 
(13.64%) said yes on homework but not on exams, another three 
(13.64%) were willing if the autograder were improved, and the 
remaining six (27.25%) answered in the negative. Positive perceived 
educational value was necessary for students to respond in the 
afrmative, but it was not sufcient. For this question, participants’ 
concerns about fairness, inaccuracy, and peer discontent sometimes 
outweighed positive educational value. 

4.7 Satisfaction (RQ6) 
We measured students’ satisfaction with code reading questions in 
low-stakes scenarios (homework) and high-stakes scenarios (exams) 
separately. Figure 5 summarizes Likert ratings from the survey of 
each type of assessment method in the course. Three observations 
summarize the data: 

~
~
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• Satisfaction ratings of code reading questions were polarized 
for both homework and tests. 

• About the same number of students were satisfed with code 
reading questions on homework as there were dissatisfed, 
but more students were dissatisfed with code reading ques-
tions on tests. 

• Overall, students were more satisfed with the other types 
of assessment. 
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Figure 5: Distribution of satisfaction ratings for each type of 
assessment method in the course on a 5-point Likert scale – 
1: Very dissatisfed, 2: Somewhat dissatisfed, 3: Neither sat-
isfed nor dissatisfed, 4: Somewhat satisfed, 5: Very satis-
fed. “CR” is shorthand for “code reading.” Survey data only 
(N=49). Satisfaction ratings of code reading questions were 
polarized for both homework and tests. More students were 
dissatisfed with code reading questions on tests. Overall, 
students were more satisfed with the other types of assess-
ment. 

The interviews revealed a variety of reasons for both satisfaction 
and dissatisfaction. For code reading questions on the homework, 
six participants (27.27%) liked the policy of unlimited attempts on 
the homework because it ofered them abundant practice opportuni-
ties. In addition, seven participants (31.82%) gave positive feedback 
about the immediate feedback and exemplar answers; they said the 
feedback helped them fnd out why they were wrong and learn 
to cater to the algorithm for the exams. Four of the interviewees 
(18.18%) said they were satisfed with the code reading questions 
on homework because they perceived high educational value. 

On the other hand, frequently being marked wrong and/or false 
negatives led to dissatisfaction on the homework. Two participants 
(9.10%) disliked code reading questions mainly because they did not 
perform well on them. The remaining interviewees (N=7, 31.82%) 
attributed dissatisfaction to false negatives. They disliked spending 
extra efort on the homework to learn how to cater to the system, 
to observe patterns, and to memorize the exemplar answers when 
they felt they had already understood the key concepts behind code 
reading. 

I kind of felt like it was just a guessing game. ... even if I 
did understand the concept that they were testing ... and 
so, my strategy was to kind of, to write whatever I was 
thinking, and then, analyze the examples that they gave 
me, and then go through the question multiple times, to 
ensure that I kind of knew what they were looking for ... 
I defnitely found myself trying to memorize a lot of the 
answers, so that on the test, I could simply write it out 
and kind of just get that question over with. (P-ID=35) 

Two themes in interviewee statements explained why partic-
ipants (both interview and survey) were generally less satisfed 
with code reading questions on exams. First, the high-stakes na-
ture of exams likely amplifed the efects of false negatives. Five 
interviewees (22.73%) reported experiences of false negatives on the 
homework, but they felt little impact. In contrast, six interviewees 
(27.27%) reported that false negatives on exams frustrated, annoyed 
or stressed them. Indeed, logistic regression using the combined 
survey and interview data found that higher perceived false nega-
tive rate predicted dissatisfaction on exams (p=0.01, coef=-0.041, 
95% CI=[-0.0754, -0.0121]), but not on homework. Second, students 
only had one attempt on code reading questions on the exams, with 
no partial credit. Five participants (22.73%) felt that compared to 
the homework, this policy deprived them of a feeling of control 
over their grades. 

Lastly, students stated various reasons for why they were more 
satisfed with the other types of questions, i.e. multiple-choice, true-
false and programming (code writing). Seven participants (31.82%) 
preferred the other types of questions because they considered 
the grading more objective, with near-perfect or perfect accuracy. 
Seven participants (31.82%) preferred programming questions due 
to higher perceived educational value, or the view that code writing 
eclipsed code reading in relevance. 

In summary, many factors contributed to satisfaction, including 
the autograder’s errors, grading policy surrounding the autograder, 
the autograder’s feedback, students’ performance on code reading 
problems, and perceived educational value. Participants viewed 
unlimited homework attempts and immediate feedback positively, 
but cited the need to learn to write for the autograder, having only a 
single attempt on exams, false negatives, and being marked wrong 
as major drivers of dissatisfaction. 

4.8 Feedback and desired improvements (RQ7) 
At relevant points in the interviews, we asked interviewees for 
feedback on the code reading questions and what changes would 
improve their attitudes. Nine interviewees (40.91%) suggested the 
need for formal instruction on how to write for the autograder, as 
they felt the course relied on students to form their own strategies. 
Instruction could include explanations of the algorithm’s opera-
tion, writing tips, and worked examples in lecture and discussion 
sections: 

In lecture or lab, they don’t really talk about those, so 
maybe just doing a couple of practice ones. And I had 
taught myself how the computer thinks about them, but 
maybe explaining it and showing us would be a little 
more helpful, and people wouldn’t, I guess, get them 
wrong as much even though they were right. (P-ID=2) 

Related to the theme of more instruction, nine participants (40.91%) 
wanted more tips for explain in plain English questions in general, 
without specifcally mentioning the autograder. They asked for 
more instructional activities (e.g. a dedicated lecture or explaining 
code to peers in discussion sections) to practice and learn before 
encountering the questions for real credit. 

The most popular requests (N=17, 77.3%) involved improving 
the autograder’s accuracy by various means. Six students (27.27%) 
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suggested collecting more exemplar answers to improve the auto-
grader’s coverage of keywords. Some proposed double-checking for 
autograder mistakes, especially in the exams (notably, this already 
was happening). Others proposed a continuation of assessments 
based on reading code, but switching from a open-ended response 
scheme to a multiple-choice or fll-in-the-blank scheme. Finally, 
nine participants (40.9%) preferred manual grading, because they 
felt it was difcult for computers to interpret natural language well. 
But contrary to this belief, the autograder made about the same 
number of mistakes as average-experienced TA graders and made 
fewer mistakes than inexperienced TAs [24]. 

5 DISCUSSION 
In this section, we discuss the concerns our participants raised and 
what strategies might address these concerns. We conclude with a 
discussion of how to determine whether educators should use AI 
autograders. 

5.1 The overestimation of false negatives 
As mentioned in Section 4.4, participants broadly overestimated 
false negative rates (FNRs), i.e., correct answers graded as wrong, 
and estimates of this rate were negatively associated with satis-
faction on exams and perceptions of fairness (Table 1). These as-
sociations require further research to confrm and fnd causation. 
Nonetheless, the quantitative and interview evidence of the asso-
ciation between FNR perception and student attitudes suggests 
the need for better alignment of FNR perceptions with actual sys-
tem performance. Based on our interviews and prior literature, we 
propose three explanations and potential solutions for the FNR over-
estimation. Note that these explanations are not mutually exclusive 
nor exhaustive. 

Our frst explanation states that students were more sensitive to 
false negatives or remembered them better, i.e., the well-documented 
phenomenon of algorithm aversion [17], where people quickly 
lose trust in algorithmic predictions after seeing mistakes, even 
when the systems outperform humans. Setting proper expectations 
can help counter algorithm aversion, and providing transparency 
around algorithmic processes before use has shown promise in the 
literature [19, 33]. One avenue for transparency for our case is to 
inform students of the training process which used past students’ 
answers, as all but one interviewee failed to mention this in their 
folk theories. Informing students of such components of the pro-
cess signals the diversity of “correct” response expressions that the 
autograder accepts, to help students align their FNR perceptions 
with the actual FNR. Another suggestion is for the interface to 
highlight spelling mistakes and then give an opportunity for correc-
tions before grading. This approach directly addresses interviewees’ 
concerns about misspellings causing false negatives. 

Second, other students’ complaints may explain high FNR 
perception: a number of interviewees cited the large number of 
complaints on the course forum to support their estimate of false 
negatives (Section 4.4). We expect that mostly students with neg-
ative experiences wrote posts, leading to biased impressions. To 
address this, we suggest instructors frst encourage students to ap-
peal via a dedicated, private channel, and address public complaints 

promptly, especially those that were true negatives mistaken as 
false negatives. 

A third plausible explanation is that students cannot accurately 
diferentiate between true and false negatives. That some in-
terviewees reported personally experiencing false negatives “fre-
quently,” despite the system’s 10% FNR, lends support to this expla-
nation. Moreover, Azad et al. found that the ways students appealed 
autograder decisions suggested that they did not reliably detect 
mis-scoring [5]. If this explanation proves to be infuential, instruc-
tors should design measures to help students better self-refect and 
detect mistakes. The system in our study disclosed correct answers. 
Beyond this, we suggest adding explanations for why common in-
correct answers are incorrect (perhaps by highlighting words with 
high negative weights), which will help students be less quick to 
blame the autograder when their answers are marked incorrect. 

5.2 Managing the impact of false positives 
Despite the instructor intentionally biasing the algorithm towards 
false positives (incorrect answers graded as correct), many of our 
participants were not aware that false positives were possible and 
underestimated their frequency even after we revealed their exis-
tence (Section 4.4). The presence of false positives, however, had 
noticeable impact: interviewees expressed concerns about fairness 
and of leading students to believe that incorrect concepts were 
correct, thereby inhibiting learning (Section 4.5). 

To address concerns about teaching misconceptions to students, 
we recommend instructors explore mechanisms that encourage 
refection by nudging students to compare their answers to the 
correct answers as opposed to merely showing correct answers. 
Articulating the existence of false positives is another approach, 
however it may actualize the fairness concerns of our participants 
for students that had not considered the possibility of false positives 
before. 

Fairness concerns associated with false positives are challenging 
to address. For low-stakes settings, future work should examine 
whether having low point values or emphasizing the formative 
aspects of the assignments will lessen concerns about undeserved 
points. Another mitigation strategy that we suggest for high-stakes 
settings is to have humans in the loop to garner trust – perhaps 
peer confrmation. Furthermore, technical advancements might 
steadily push false positive rates towards zero, but further work 
will be required to determine what rate students will accept. 

5.3 Balancing false negatives and positives 
As discussed above, both FPs and FNs cause harm. In general, sys-
tem designers may chose to bias errors towards more FPs or more 
FNs, but as far as we know, no research has extensively studied 
the efects of diferent emphases of FPs and FNs for autograders. 
Future experiments are necessary to measure the causal efect sizes 
between FN rate/FP rate, fairness perception, satisfaction, and learn-
ing outcomes. Pedagogically, we advise that learning outcomes take 
priority. We do not advocate lowering FNs to increase student sat-
isfaction at the cost of more FPs if it adversely impacts learning. In 
addition, since perceived FN rates were more negatively associated 
with exam satisfaction than homework satisfaction, this suggests 
that diferent stakes may call for diferent balancing strategies. For 
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example, decreasing FPs for formative situations like homework 
may be justifed if research shows that FPs tend to teach miscon-

ceptions, but this would not apply to high-stakes summative exams 
if FNs are shown to greatly decrease satisfaction. 

5.4 Course policy and use suggestions for 
incorporating AI autograders 

5.4.1 Help students construct efective folk theories for the auto-
grader. Students in our study felt they received minimal information 
about how the autograder worked and instructions on how to write 
for it (Section 3.1.2), and some interviewees requested more expla-
nation or examples on how to cater to the autograder (Section 4.8). 
While pedagogically we struggle with the notion of teaching stu-
dents how to satisfy a particular autograder, our study suggests that 
insufcient understanding of the algorithm is problematic. Some 
interviewees resorted to memorization of answer keys to make the 
algorithm consistently award points, and at least one interviewee’s 
folk theory about how the autograder worked did not consider 
negative weights, which resulted in a counterproductive strategy 
that included writing long answers (Section 4.3). 

We feel that additional transparency would have benefted our 
interviewees by guiding them towards folk theories that better 
informed their strategies and answers. The knowledge that key-
words had negative weights would discourage indiscriminately 
packing keywords into answers, and the knowledge that the algo-
rithm considered groups of words would encourage students to 
write complete sentences rather than engage in keyword bingo. 
Similarly, knowing that the autograder was trained using previous 
students’ answers in the course might help students fxate less on 
the exact wording of their answers. 

How to provide this transparency is an open question. Messaging 
is one approach. Instructors should strive to fnd proper messaging 
to dispel unproductive folk theories and improve attitudes. Poor 
messaging can backfre: prior literature suggests that too much 5.5 When is an AI autograder appropriate? 
transparency can lead to a drop in trust [32]. Future work should 
explore how the amount, kind, and timing of information revealed 
about the autograder afects folk theories and perceptions of the 
system. 

To better inform eforts to dispel harmful folk theories, future 
work should explore the efciency of various approaches in prob-
ing students’ potentially harmful folk theories; some of these ap-
proaches include surveys and analysis of discussion forums. As 
a bonus, these approaches will help detect gaming attempts. Our 
interview fndings suggest that making the system hard to game is 
the best way to prevent gaming. 

Finally, instructors should not neglect to teach general strategies 
for answering questions, regardless of the presence of an auto-
grader. The goal is to teach code understanding, not how to write 
for an autograder. Many interviewees requested more instruction 
and practice around how to code-read and communicate a piece 
of code before applying the skills in an autograded environment 
(Section 4.8). 

5.4.2 Encourage a practice mindset in low-stakes environments. Par-
ticipants in our study were generally more satisfed with the auto-
grader’s use and policies on homework than in exams, and appreci-
ated the feedback and allowance of unlimited attempts (Section 4.7) 

– thus, the homework efectively operated as a sandbox environ-
ment for students. Students said they formed their folk theories 
and answer construction strategies gradually through low-stakes 
practice before utilizing them on the exams, further increasing the 
usefulness of a good implementation of low-stakes practice. Given 
these fndings, instructors should consider autograder use in low-
stakes, sandbox-like environments to ofer students practice – more 
of a learning than an assessment tool. 

5.4.3 Address concerns about group disadvantages. Many of our 
interviewees mentioned certain groups experiencing unfair disad-
vantages, such as non-native English speakers. We do not have 
data on whether this was the case, but believe instructors should 
attempt to fnd out and preemptively address or dispel such student 
concerns if possible. 

5.4.4 Approach high-stakes usage with caution. According to some 
interviewees, the policy of only one attempt with an imperfect 
autograder and all-or-nothing grades dissatisfed them and deprived 
them of a sense of control (Section 4.7). A system of partial credit 
could address some of this concern. However, ofering multiple 
attempts as in the homework could backfre, as Azad et al. found that 
multiple attempts on a similar autograder signifcantly increased 
FPR but only slightly reduced FNR [5]. 

In addition, we recommend a robust appeal process. Interviewees 
said the appeal process reduced discontent towards false negatives, 
as shown in Section 4.5. However, the additional efort required 
to go through the process did cause frustration, and as suggested 
before, students may not know when to appeal [5]. Appeals invite 
fairness concerns too, as some participants had the impression that 
some of their peers appealed often, even when the appeals were 
not warranted, while others experienced self-doubt and chose not 
to appeal. Future work is required to address these concerns. 

The above discussion focused on how to deploy an AI autograder, 
but before that happens, we encourage educators to ask “should I 
deploy an AI autograder?” Our fndings suggest that autograder 
performance, subgroup fairness, and consequences of scores are 
at best the minimum set of criteria to consider [55]. Even if the 
autograder in our study had exceeded human performance, it is 
likely that algorithm aversion will still exist, students will still over-
estimate error rates, and they will have the same fairness concerns. 
Educators should carefully consider the ability and resources to 
address these concerns. Moreover, there exist ethical concerns as to 
whether an algorithm should be used as a predictive grading system. 
Unless we ask ourselves whether an algorithm can reliably, consis-
tently, and ethically assess and predict outcomes – and critically 
address this question, we will see more cases like the recent use of 
an algorithm that predict A-level exam scores (for exams that were 
not taken) in the UK, which prompted outrage and accusations of 
unfairness [6]. 

6 LIMITATIONS 
While authentic classroom experiences frame our study, the fndings 
of our research refect the particular autograder under study, EiPE 
questions, and the course policies. Thus we urge consideration of 
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similarity to our circumstances before generalizing our fndings 
and guidelines to other types of autograders, question types, subject 
matters, or student populations. 

Another limitation is that interviewees could have rationalized 
their attitudes, creating reasons to explain their feelings rather than 
reporting the true explanation. Future work can apply non-self-
reporting based approaches or randomized controlled experiments 
to expand on our results. 

We note several sources of potential bias. First, our participants 
are subject to self-selection bias. We noted an over-representation of 
female participants and very few participants that reported below-
average class performance, especially on the interviews. Second, 
surveys and interviews often sufer from self-reporting bias [1], 
including recall bias and recency bias. However, we found no sta-
tistically signifcant diference in exam satisfaction rates between 
those that participated before and after the fnal exam, suggesting a 
small impact. Third, a researcher’s position and personal bias may 
impact data qualitative collection and analysis [15]. Members of 
the course staf and the instructors are co-authors of this paper; 
however, they did not actively participate in the data collection 
and analysis process. Those who did data collection and/or analy-
sis tried their best to hold neutral and open attitudes towards the 
autograder. 

7 CONCLUSION 
Through our exploratory mixed-methods study, we identifed fac-
tors that afect students’ attitudes and interactions with imperfect 
AI autograders, as well as guidelines for incorporating imperfect 
short answer autograders into classrooms in a manner that is con-
siderate of students’ needs. Much work remains to fully capture the 
complexity of students’ views surrounding automatic assessment. 
We encourage further research on solutions for the concerns of 
stakeholders, paving the way for AI to provide further gains in 
efciency and learning. 
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