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ABSTRACT
Errors in AI grading and feedback often have an intractable set
of causes and are, by their nature, difficult to completely avoid.
Since inaccurate feedback potentially harms learning, there is a
need for designs and workflows that mitigate these harms. To bet-
ter understand the mechanisms by which erroneous AI feedback
impacts students’ learning, we conducted surveys and interviews
that recorded students’ interactions with a short-answer AI auto-
grader for “Explain in Plain English” code reading problems. Using
causal modeling, we inferred the learning impacts of wrong answers
marked as right (false positives, FPs) and right answers marked
as wrong (false negatives, FNs). We further explored explanations
for the learning impacts, including errors influencing participants’
engagement with feedback and assessments of their answers’ cor-
rectness, and participants’ prior performance in the class.

FPs harmed learning in large part due to participants’ failures to
detect the errors. This was due to participants not paying attention
to the feedback after being marked as right, and an apparent bias
against admitting one’s answer was wrong once marked right. On
the other hand, FNs harmed learning only for survey participants,
suggesting that interviewees’ greater behavioral and cognitive en-
gagement protected them from learning harms. Based on these
findings, we propose ways to help learners detect FPs and encour-
age deeper reflection on FNs to mitigate the learning harms of AI
errors.
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1 INTRODUCTION
Formative feedback is a critical facilitator of learning and perfor-
mance [4, 5, 20, 34, 60]. Timely feedback especially helps students
learn [70], and computers are well-positioned to provide prompt
feedback when large course sizes would make it otherwise imprac-
tical, such as in large university courses and Massive Open Online
Courses (MOOCs). With advancements in Natural Language Pro-
cessing (NLP), computers can now quickly provide grading and
feedback on essays and short answer responses [28, 43]. This fa-
cilitates the scaling up of courses that have traditionally relied on
these types of assessments, as well as novel assessment strategies in
computing education, such as the “Explain in Plain English” (EiPE)
code reading problems that form the context of this paper. How-
ever, such feedback, including AI-generated ones, is sometimes
inaccurate.

Past studies have demonstrated that on simple tasks where
computers can provide perfectly accurate feedback (e.g., multiple
choice), people were less likely to master a task when researchers
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intentionally gave them inaccurate feedback [12, 32, 36]. But no
prior work has addressed the learning impacts of erroneous feed-
back in the context of free-form responses graded by AI to the
best of our knowledge. Improvements to fix grading mistakes in
AI involve retraining with more data, improving the model ar-
chitecture, etc., which may not be feasible due to resource and
technological limitations. Furthermore, students hold different at-
titudes towards AI grading of free-form responses compared to
the more hard-coded grading of multiple-choice and programming
questions [3, 33]. Therefore, there is a need to understand the learn-
ing impacts and to improve workflows and interface designs to
help students maximize learning on free-form responses despite
inaccurate computer-provided feedback.

The current study contributes to this understanding by using
the context of an automated short-answer grader (ASAG) deployed
in an introductory computer science course at a large public uni-
versity in the US. We invited students to participate in surveys and
interviews, during which they worked on a series of EiPE problems
and got feedback from the autograder as they would in class (Figure
1). The participants then answered a second series of problems com-
posed of slightly modified problems from the first series. We then
used causal inference to determine how grading mistakes during
the first series of problems influenced performance during the sec-
ond series. We separately analyzed the impacts of wrong responses
marked as right (FPs) and right responses marked as wrong (FNs).
This kind of analysis allows us to inform educators’ FP-FN trade-off
decisions in their deployment of AI systems.

Furthermore, we investigate the mechanisms by which FPs and
FNs harm learning in order to provide targeted suggestions for
educators and designers to mitigate the learning impacts of auto-
grader errors on students. Our causal modeling focuses on several
hypotheses that prior work does not completely explore, includ-
ing behavioral engagement after receiving the feedback, students’
ability to detect grading errors, and students’ prior abilities. To
complement this, we interviewed students to probe how they in-
teracted with inaccurate feedback. We present the formal research
questions in Section 2.

From our study, we found distinct effects of FPs and FNs. FPs
harmed learning by preventing students from knowing about the
conceptual errors in their answers. This was partially because many
participants skimmed or skipped the feedback during FPs, and par-
tially because being marked right appeared to bias participants
against admitting they were wrong and thus correcting their an-
swers. Higher-performing students detected FPs at a lower rate
and experienced a larger absolute drop in their learning outcomes
than lower-performing students, possibly because they were more
confident in their incorrect answers.

FNs affected our participants less consistently. FNs caused statis-
tically significantly lower learning outcomes in the survey setting
but not in interviews. When learning harms did happen, it was
often because participants reworded post-test responses in a way
that made them too vague to be considered correct. Participants’
accuracy in assessing their answers as correct after receiving feed-
back did not explain the difference between the interview and
survey conditions. We hypothesize the additional cognitive engage-
ment that interviewees experienced when explaining their thought

processes upon receiving the feedback protected them from the
learning harms.

In addition to our findings, we make the following contribu-
tions to the design and deployment of ASAGs, especially for EiPE
problems:

• Recommendations on workflows and interfaces to help learn-
ers detect FPs and enhance effective engagement with feed-
back when faced with FPs and FNs.

• Empirically-supported advice for determining FP-FN trade-
offs in AI-generated feedback.

• Evidence of the value of personalizing AI error mitigation
strategies based on student performance level.

2 RELATEDWORK
In this section, we first briefly review developments in feedback
for free-form responses, including Explain in Plain English prob-
lems in computer science. We then discuss feedback in general and
the impact of erroneous feedback, especially erroneous feedback
from computers. Lastly, we discuss prior work that hints at how
autograder errors impact learning.

2.1 Automatic Assessment of Free-Form
Responses

Educators are incorporating NLP approaches in their free-form
response feedback workflows to offer timely feedback to students
at scale. For instance, Automated Short Answer Grading (ASAG)
systems evaluate the objective correctness of short answers [14, 43].
They have been deployed in a variety of classroom exercises and
high-stakes examinations, including in computer science [3], biol-
ogy [2], and physics [38] courses. Beyond use in individual class-
rooms, C-rater, an ASAG system, was used in a National Assess-
ment for Educational Progress (NAEP) assessment and a statewide
assessment in Indiana [43].

2.2 Explain in Plain English (EiPE) problems
The ASAG system that we evaluated in this study was deployed
in a university introductory computer science class and graded
students’ responses to problems that asked them to provide short
English descriptions of Python code (Figure 1). These problems are
known as Explain in Plain English (EiPE) problems. EiPE rose in
prominence as a method to assess students’ ability to read code and
discuss its behavior at a high level of abstraction [67]. While a full
discussion of the teaching effectiveness of EiPE in computer science
education is beyond the scope of this paper, multiple studies have
supported code reading as a necessary skill for developing more
advanced programming proficiency [19, 44, 45, 53, 66].

2.3 Formative Feedback
Shute defines formative feedback as information communicated to
the learner with the intent to modify their thinking or behavior to
improve learning [60]. Feedback is a critical facilitator of learning
and performance [4, 5, 20, 34, 60]. A wide variety of factors impact
feedback effectiveness, such as specificity [6, 20, 57, 69], complexity
[42, 58, 62], timing [1, 18, 48, 59], and more. These factors interact
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Figure 1: Screenshot of the interface that participants used in our study. The workflow and language mirrors that which was
used in class. Students are instructed to provide a high-level description of Python code. Shown is a problem used in the study,
along with a participant’s response and the feedback the computer provided. The bottom part of the screenshot contains the
feedback, including the autograder’s mark, exemplar answers, and a labeled diagram. This feedback always appears, regardless
of whether the response is marked correct.

with the characteristics of the feedback receiver. For example, lower-
performing students benefit more from immediate feedback than
delayed feedback [23, 47], and they benefit more from feedback that
explains why an answer is right/wrong than feedback that simply
states whether an answer is right/wrong [17, 30].

In addition, learners must receive feedback mindfully for it to
benefit learning [6, 70]. Some learners engage with feedback well
[31], and others poorly [26, 37, 61]. Many personal characteristics
of the feedback receiver affect engagement, including gender [64],
self-efficacy [29], motivational beliefs [63], and more. Furthermore,
feedback receivers need to view a source as credible before they
are willing to use the source’s feedback [13, 21, 40]. In this paper,
we extend the rich body of work on factors that impact feedback
effectiveness and engagement by studying the effects of erroneous
feedback from AI.

2.4 Impacts of Inaccurate Feedback
A limited number of studies have examined how inaccurate feed-
back impacts feedback usage and learning. Johnson et al. found
that contingent (i.e., accurate) performance feedback improved per-
formance relative to independent feedback uncorrelated with their

performance [36]. Brand et al. found that people who received in-
accurate verification feedback on simple match-to-sample tasks
were more likely to fail to acquire task-relevant skills [12]. This
was true both for human- and computer-provided feedback. In addi-
tion, inaccurate feedback had a lasting effect in [32], as participants
didn’t learn with inaccurate feedback and didn’t begin learning
immediately after switching to accurate feedback.

Our current study adds three novel perspectives. First, we eval-
uate the impact of inaccurate feedback on AI-graded free-form
responses, specifically in the domain of ASAG. Prior work suggests
that students hold different attitudes towards AI grading of free-
form responses compared to the grading of questions that are more
hard-coded, such as multiple-choice and programming questions
[3, 33]. Second, in this context, we separately analyze the impacts of
wrong answers graded as correct (FPs) and correct answers graded
as wrong (FNs). As AI systems designers must make trade-offs be-
tween FPs and FNs, a better understanding of the relative harm
between these two types of errors will maximize student learning
from these systems. Third, as far as we know, we are the first to
model how prior student performance or knowledge interacts with
erroneous feedback, especially in an ASAG context. This knowledge
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will help design personalized interventions relevant to imperfect
autograder feedback. Hence, we ask:

• RQ1: What is the learning impact of FPs and FNs dur-
ing autograded EiPE problems?

2.5 How Autograder Errors Impact Learning
Gaining a deeper understanding of how autograder errors impact
learning will be critical for addressing the impacts of these errors.
While there may be many reasons, we focus on a few hypotheses
hinted by prior work.

2.5.1 Students’ Assessment of Their Answers’ Correctness. Prior
work suggests that students blame the autograder for marking
themwrong and have trouble distinguishing errors from non-errors.
We hypothesize not detecting FPs could prevent students from
trying to improve their incorrect answers, and hence negatively
impact learning. In an investigation of a deployed ASAG system
in a computer science course, Azad et al. showed that students
perceived the ASAG as less reliable than other types of grading
(e.g., multiple choice questions), and students often appealed the
autograder’s mark even when their answer was truly incorrect.
In a later study exploring a similar ASAG system, Hsu and Li et
al. found that students overestimated the probability the grader
would mark correct answers as incorrect and that many students
were unaware that the system marked incorrect answers as correct
[33]. This suggests that students may fail to detect whether the
autograder is making an error and subsequently inaccurately assess
their answers’ correctness. In contrast to prior work, we directly
probe students’ thinking after receiving an ASAG’s feedback as
they assess whether they wrote a correct response. We further link
the detection of autograder errors to learning outcomes.

• RQ2a: How does students’ ability to assess their an-
swers’ correctness upon receiving feedback change
with autograder errors (FPs, FNs)?

• RQ2b: How does accurately detecting or not detecting
autograder errors explain learning outcomes?

2.5.2 Feedback Engagement. Errors in computer-provided feed-
back may reduce student engagement with the feedback, negatively
impacting learning. We expect students will pay less attention to
feedback when marked right, even when it happens accidentally.
A small usability study for an ASAG in the subject of natural sci-
ence (N=6, 13 questions per participant) observed that one of the
participants failed to notice a FP primarily because they ignored
the detailed feedback when marked right [38].

The current study investigates students’ behavioral engagement
with imperfect ASAG feedback in a larger sample and examines the
downstream impacts on detecting autograder errors and learning.
We additionally model students’ engagement with FNs, which prior
work does not address. We formalize the research questions as
follows:

• RQ3a: How does engagement with feedback change
with grading errors (FPs, FNs)?

• RQ3b: How does this engagement influence students’
ability to assess their answers’ correctness upon receiv-
ing feedback?

• RQ3c: How does this engagement explain learning out-
comes?

2.5.3 Prior Knowledge and Experience. As mentioned in Section
2.3, lower-performing students learn differently from feedback com-
pared to higher-performing students. As far as we know, we are the
first to model how prior student performance or knowledge mod-
erates the impacts of erroneous feedback, especially in an ASAG
context. This knowledge will help us design personalized inter-
ventions relevant to imperfect autograder feedback. We reasoned
that since low-performers have more to learn and improve than
high-performers, inaccurate feedback would lead to more missed
learning opportunities for lower-performers. More formally, we
check how class performance interacts with autograder errors to
produce learning effects, as well as our proposed explanations for
these effects:

• RQ4: How does student performance moderate auto-
grader errors’ impact on (1) their learning, (2) accurate
assessment of their own answers’ correctness, and (3)
their engagement on feedback?

3 CAUSAL MODELING
Our RQs suggest various causal relationships among the auto-
grader’s Decision Class (TP/TN/FP/FN), student performance, and
three key outcome measurements: engagement time on feedback,
accurately assessing the correctness of one’s answer, and learning
outcomes. Figure 2 visually organizes these relationships into a
directed acyclic graph (DAG) according to our RQs.

Unfortunately, we have no practical way to manipulate these
factors in an ecologically-valid way. For instance, to assign a student
to experience a FP (a wrong answer graded as right), we would
have to force them to write a wrong answer. Likewise, manipulating
whether a student detects an autograder error requires interfering
with their natural cognitive processes.

We instead take a quasi-experimental approach that observes
behaviors and controls for confounds. Prior to collecting any data,
we performed a literature review and identified confounding factors
– factors we reasonably believed could each correlate with more
than one variable of interest (the variables on the right side of
Figure 2). We grouped confounds based on the subset of variables
that they affected:

• Moderating confounders – student performance and our
experimental setting (survey or interview). These moderate
all the relationships on the right side of Figure 2.

• Group 1 confounders – factors that could predict the likeli-
hood of a participant writing a correct response as well as
change their usage of feedback, and thus have the potential
to correlate with both Decision Class and our outcome mea-
surements. We included participant ID, question ID, question
order (due to fatigue [56] or learning from earlier questions),
and a participant’s confidence in a question [52].

• Group 2 confounders – we judged these to potentially cor-
relate with our three outcome measurements but not with
Decision Class. They include task-value belief, task success
expectancy, prior trust of the autograder, and more. For a
full list and justifications, please see Appendix 9.1.
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Outcome Measurements

Decision Class*
(TP/TN/FP/FN)

Engagement Time
on Feedback

Accurately Judges
Whether One's

Answer Is Correct

Learning Outcome

(*Additionally moderates all the effects among
the three outcome measurements)

Group 2 Confounders

(Factors that affect all
three outcome measurements)

Group 1 Confounders

(Factors that affect both the decision class
and the three outcome measurements)

Confounders that are moderators:
Survey vs. Interview

& Self-reported Grade

(Affects both the decision class
and the three outcome measurements;
Moderates all the effects among them)

Figure 2: Our main causal diagram describing effects in the context of a single instance of an autograded EiPE question. Edges
in this directed acyclic graph (DAG) represent researchers’ belief that one variable may affect another based on prior work and
reasoning. The left side of the figure summarizes confounds. Edges implicitly exist between the confounds and variables on the
right side of the figure as described but are not drawn to reduce visual clutter.

This grouping provides specificity about which confounds affect
which variables, which helps avoid needless inclusion of covariates
and careless introduction of confounds that could cause spurious
correlations during statistical modeling [49]. We incorporated these
confounds into the DAG (left side of Figure 2), then derived several
regressions to answer our RQs. Table 1 lists these regressions. Each
regression tests a subset of the DAG; taken together, this organiza-
tion is conceptually similar to Baron and Kenny’s method of using
several regressions to test statistical mediation [8]. Models 1, 2, and
3 examine the total effects of Decision Class on outcome measures;
they include but do not separate out the effects via intermediary
variables. Models 4 and 5, in contrast, do measure the effects of
intermediary variables separately. Supplementary materials include
the detailed specifications of the models.

4 METHODS
To answer our research questions, we conducted a quasi-experiment
where we asked students to work on a series of autograded EiPE
problems in either a survey or an interview environment. In this sec-
tion, we first describe the context of the study and the background
of the autograder. Then we describe how we operationalized the
measurement of participants’ engagement time, their assessments
of their answers’ correctness, and learning during the interviews
and surveys. Next, we discuss the ethical considerations of our
study design. Finally, we describe the participant recruitment, data
annotation, and analysis approaches.

4.1 The class setting and autograded questions
This study took place in the context of a full-semester introductory
computer science class for non-majors at the University of Illinois
at Urbana-Champaign in Fall 2021. Approximately 600 students
were enrolled in this class designed to teach Python and Excel to
people without prior programming experience. Due to the COVID-
19 pandemic, the course’s lectures were conducted synchronously
online. Even before the pandemic, all homework and exams were
computerized.

4.1.1 Development and deployment of the autograder. The course
mentioned above implemented EiPE problems with an autograder
that marked answers right or wrong, allotting no partial credit.
This autograder was developed specifically for the course, and fit a
logistic regression model on bigram and bag-of-words features split
and tokenized with Python’s nltk module. It was approximately
87% accurate, which was statistically indistinguishable from the
course’s TAs accuracy [22]. Problems were presented to students
as shown in Figure 1.

The autograder graded both formative assessments (homework)
and low-stakes summative assessments (four small quizzes worth
2% each). On homework, the system provided feedback in the form
of the autograder’s mark, exemplar answers, and sometimes a la-
beled diagram of the code for more complex problems (see Figure 1).

In multiple lectures at various times throughout the semester,
the instructor formally discussed the autograded EiPE questions.
They explained that answers should be unambiguous, correct, and
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Table 1: Piece-wisemodeling of the causal diagram: five regressionmodels.We use the following abbreviations: IVs - Independent
Variables; DV - Dependent Variable or the response variable of the regression; CFs - relevant confounders, which are controlled
for by adding them as additional predictors for each DV. In all the models, for each IV, we additionally include an interaction
effect between that IV and the experiment setting (survey vs. interview); this is not explicitly written inside the table for
purposes of brevity. Note that while we believe self-reported grade moderates all effects, we only added this interaction effect
to the Decision Class variable in the total effect models (Model 1-3) and the Engagement Time and Accurately Assessed Own
Answer variables in Model 5, in an effort to increase parsimony.

# IVs DV CFs Comments
1 Decision Class (D),

Self-Reported Grade (G),
D x G

Learning
Outcome

Group 1 Addresses RQ1 (total effect of autograder errors
on learning) and RQ4 (how the impact differs with
student performance)

2 Decision Class (D),
Self-Reported Grade (G),
D x G

Accurately
Assessed
Own Answer

Group 1 Addresses RQ2a (total effect of autograder errors
on whether learners accurately assess their an-
swers’ correctness) and RQ4 (how they differ with
student performance level)

3 Decision Class (D),
Self-Reported Grade (G),
D x G

Engagement
Time

Group 1 Addresses RQ3a (total effect of autograder errors
on engagement) and RQ4 (how the impact differs
with student performance)

4 Decision Class (D),
Engagement Time (E),
Self-Reported Grade (G),
D x E

Accurately
Assessed
Own Answer

Group 1,
Group 2

Addresses RQ3b (direct effects of engagement and
autograder errors on whether learners accurately
assess their answers’ correctness)

5 Decision Class (D),
Engagement Time (E),
Accurately Assessed Own
Answer (A),
Self-Reported Grade (G),
D x E, D x A, G x E, G x A

Learning
Outcome

Group 1,
Group 2

Addresses RQ2b, RQ3c (downstream learning ef-
fects of engagement, detecting errors) and RQ4
(how the impact differs with student performance)

at a high level of abstraction in order to receive credit. They further
presented and explained authentic student errors and explained
that most perceived issues were not autograder errors. Students
were then given some sample answers to these problems to grade
for themselves.

4.2 Approach 1: Interview
We conducted 30 semi-structured interviews to gather qualitative
data on interactions with autograded EiPE problems in addition to
quantitative data. Interviews took place over Zoom while partici-
pants simultaneously completed an interactive Qualtrics question-
naire. The questionnaire embedded an EiPE interface similar to the
interface that participants were using in class (Figure 1). Interviews
lasted 80 minutes on average, and participants were paid $15.00 per
hour, with up to $2.00 in bonus compensation (explained later).

The first two co-authors both functioned as interviewers. To
ensure consistency, the interviewers co-conducted the 1st, 2nd, and
12th interviews. Besides those three, each interviewer conducted 12
and 15 interviews solo, alternating as much as possible within the
constraints of each person’s schedule. As new situations appeared,
the interviewers communicated their experiences and proposed
refinements to the wording of follow-up questions. Minor revisions

happened after the 3rd, 5th, and 12th interviews. We summarize
the interview protocol below; the supplementary material contains
all details and exact question wording.

Part 1: Beliefs Towards EiPE Questions and the Autograder.
First, we elicited participants’ perceptions of the autograder’s er-
ror rates (a variable in Group 2 confounders, CF2), how valuable
they thought EiPE problems were (CF2), and how well participants
expected themselves to do on EiPE problems (CF2).

Part 2: Practice EiPE Questions with Autograder Feedback
(Pre-Test). Next, participants encountered eight EiPE problems
in a randomized order. For each problem, participants also rated
their confidence in understanding the code (a variable in Group 1
confounders, CF1) and confidence that the autograder would grade
their answer as correct.

Upon submitting an answer to each problem, participants re-
ceived feedback in the same manner as the course’s homework
assignments. The feedback included the autograder’s judgment
of correctness, some exemplar answers, and a code explanation
diagram. However, not all eight questions were graded by the same
autograder used in class. To increase encounters with FPs and FNs,
two problems were always marked as correct and two always as
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incorrect – for some participants, this was the only way they ex-
perienced errors. Participants were not informed of this change
until the debrief at the conclusion of the study. We tracked the
number of milliseconds between the time the feedback appeared
and the time the participant clicked “Next” to move on to the next
question, which operationalized our Engagement Time outcome
measurement.

Next, we collected participants’ assessments of their responses’
correctness two times. The first time, we hid the problem statement
and feedback to reduce participants’ tendencies to reflect substan-
tially on it. We used this first opinion during quantitative analysis,
as we considered it more ecologically valid, closer to the opinion
that participants would have in a natural homework environment.
The second time, we restored the problem and feedback to allow a
richer discussion and for participants to walk through what they
did with the feedback.

Part 3: General Feedback Usage Habits. Here we asked about
participants’ typical habits using the feedback on their homework
and how their behavior during the interview differed.

Part 4: EiPE Post-Test. The second block of EiPE questions
showed perturbed versions of the problems in the first block in order
to measure question-level learning outcomes. Questions appeared
in a randomized order independent of the first block. To increase
the stakes and encourage maximal effort, we told participants that
each correct answer in this block would earn them $0.25 in bonus
compensation.We also told participants not to use outside resources.
No autograding happened in this phase, and each question directly
proceeded to the next one without feedback.

Part 5: Personal Characteristics and Demographics.We sur-
veyed participants’ expected grades in the class (measuring student
performance level), goal orientation (CF2), and demographics (CF2),
including gender, English proficiency, etc.

Part 6: Debrief. Finally, we told participants that some of the
problems were, in fact, not graded by the autograder and were
always marked as right or wrong. We re-displayed the questions
from the first block, and highlighted the statically-graded questions.
The interviewer asked participants to review all the questions and
immediately provided manual grading and explanations to help par-
ticipants understand whether their responses were actually correct
or not. We provided the same kind of feedback on their post-test
answers via email within a week.

4.3 Approach 2: Online survey
To gather more data, and in an environment more similar to that of
the homework without additional induced reflection, we modified
our Qualtrics questionnaire to collect data without an interviewer.
Participants were compensated $10 for completing the survey, with
up to $1.50 in bonus compensation. The median completion time
was 22.8 minutes, corresponding to a median rate of $26.3/hr before
bonuses. We made the following modifications to the questionnaire:

• During the first series of pre-test EiPE problems (Part 2), we
cut two normally-autograded problems to decrease survey

fatigue. That left us with two normally-autograded prob-
lems, two always-marked-correct problems, and two always-
marked-incorrect problems. In addition, we asked no addi-
tional survey questions in between problems to avoid dis-
tractions and reflection in excess of a regular homework
environment. To measure whether participants thought they
had written a correct response, we displayed a button next
to the feedback that said “I think the autograder may have
made a mistake” to allow reporting.

• At the end of Part 4, we asked participants if they had used
outside resources during the post-test and told them that
their response would not impact their compensation. One
participant reported that they did, and their data was dis-
carded.

• We asked survey participants if they had not reported au-
tograder mistakes when they in fact thought they occurred.
Participants who indicated Yes were excluded from the three
models that utilized the variable of assessing answers accu-
rately (Models 2, 4, and 5) because their reporting behavior
did not accurately represent whether they thought their re-
sponse was correct. We are confident such exclusion did not
introduce biases or confounds because we controlled for fac-
tors associated with participants not reporting autograder
errors, e.g., self-reported grades, prior trust of the autograder,
and confidence in the question.

• During the debrief (Part 6), while we did re-display the prob-
lems that were always graded as right or wrong, there was
nobody to provide immediate manual grading or comments.
We instead encouraged them to reach out to us if they had
immediate questions and emailed manual grades and com-
ments to participants within one week after their survey
completion.

4.4 Constructing the pool of EiPE questions
By the time of our study, students were already exposed to and
using the autograder in their course. To reduce the chance of stu-
dents memorizing answers from existing assessments for use in the
interviews and surveys, we created a pool of new EiPE questions.
The question pool was designed to have three features. First, the
questions had to support easy modification so we could create a
new question for the same concept on a post-test, and thus a one-
to-one correspondence between pre-test and post-test questions.
Second, we had questions cover non-overlapping concepts as much
as possible to minimize the learning effect across pre-test questions.
Third, we produced a range of difficulties to show different feedback
usage relative to question difficulty. A course instructor created
eight pre-test questions and perturbed all eight into modified ver-
sions for use on the post-test. Seven out of eight modified post-test
questions had their operators inverted, i.e., switching instances of
“<” to “>”, “+=” to “-=”, etc. The remaining question had an if-even
statement switched to an if-odd statement; that is, from “if n % 2 ==
0” to “if n % 2 == 1”. All questions are available in the supplementary
materials.
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4.5 Ethical considerations
As previously mentioned, setting some questions always to be
marked as correct or incorrect was the only way for some partici-
pants to experience a FP or a FN. We carefully considered the risk
of negative learning and emotional effects from autograder errors
in our study. In summary, both we and our institution’s IRB judged
that the study would not cause harm or distress exceeding what
students in the class already encountered. Factors that mitigated
the risk of emotional harm included the knowledge that students
had already been experiencing autograder errors in their regular
homework assignments and that the study was worth no credit.
The debriefing process mitigated concerns of learning harm. We
acknowledge that our design did not guarantee survey participants’
engagement with the debriefing; however, we felt that ongoing
participation in the course would mitigate harm for such students.

4.6 Participant Recruitment
Via email announcements, we recruited participants from the uni-
versity introductory computer science course from November 9,
2021 to November 29, 2021 – the latter part of the semester, but
before final exams.We distributed announcements for the interview
first, expecting interviewees to be more difficult to find. Students
could only participate in either the survey or the interview; an-
nouncements and the survey landing page clarified this, and we
checked for duplicate contact emails.

Based on our prior experiences, we expected an overrepresenta-
tion of higher-performing students among those volunteering to
participate. To try to recruit a more balanced population, students
in the lowest 50% percentile of grades in the class received more
reminder emails about the study than the rest of the class.

We collected 40 complete survey responses and conducted 30
interviews. Due to reasons such as failing attention checks, ref-
erencing outside sources, and obvious misunderstanding of key
questions, we excluded 4 survey responses and 1 interview from
the analysis. Of the remaining participants, there were 216 question
pairs from surveys and 232 from interviews. Table 2 presents the
descriptive statistics of the dependent and independent variables in
our full sample. Note that among the survey participants, 17 out of
36 said they did not report all autograder errors that they detected,
and their data were excluded from models 2, 4, and 5. We still had
114 question pairs from the survey after the exclusion.

38% and 47% of the participants self-identified as male in inter-
views and surveys, respectively, and the rest as female. Around
68% of participants reported “A” as their expected grade in both
interviews and surveys. Because of the small numbers of “B” and
“C” participants (and no other values in our data set), we chose to
group them together. This is close to the distribution of the entire
class, where half of the students received a final grade of “A”. Based
on this grouping, we created the binary class performance variable
with values “higher-performers” and “lower-performers”.

4.7 Data Annotation
Prior to analysis, we annotated various data, including the “ground
truth” decision class of all responses to the EiPE problems in the in-
terview and survey, and interviewees’ first impressions of whether
they thought their response was correct. In each annotation task,

two team members independently and deductively coded the data,
achieving high inter-rater reliability (IRR), and then a third team
member functioned as a tie-breaker. For more details about the an-
notation process and IRRs, please see the supplementary materials.

4.8 Bayesian Modeling
We performed the five regressions laid out in Table 1 with Bayesian
formulations of hierarchical generalized linear models. All models
made predictions on the participant-question level – in other words,
each “data point” was one participant’s behavior on one practice
question and its corresponding post-test question. We defined learn-
ing outcomes in Models 1 and 5 as a binary outcome of whether
a participant answered a post-test question correctly, regardless
of their correctness on the practice version of the same question.
Models 2 and 4 predicted the binary outcome of whether a partic-
ipant assessed their answer’s correctness accurately. The models
with binary outcomes – all of them except Model 3 – utilized a
Bayesian logistic regression.1 Model 3 performed a more standard
Bayesian linear regression predicting the log-transformed feedback
engagement time data, which allowed us to describe proportional
instead of absolute differences in engagement time.2

Bayesian modeling requires priors, which embody prior beliefs
and evidence about the distribution of modeled variables and effect
sizes. We followed two general principles to set weakly informative
priors. First, we selected maximum entropy distributions (e.g., uni-
form, normal, exponential distributions), which innately make the
most conservative inference given the parameters and the data [49].
Second, we set the parameters of these prior distributions to en-
code skepticism but not impossibility towards large effect sizes. For
instance, our priors considered an autograder error increasing time
spent on feedback by tenfold an unlikely outcome. This increased
statistical power, useful for our relatively small sample size, and
ensured the priors did not dominate the findings.3 The full model
specifications can be found in the supplementary materials.

Given the priors and observed data, Bayesian regression gener-
ates a set of posterior distributions representing the likely values
of regression coefficients. In general, no closed-form solution de-
scribes the shape of the posterior distribution, so implementations
of Bayesian inference use sampling strategies. To obtain our pos-
terior distributions, we implemented the models with NumPyro, a
popular Bayesian inference framework, and performed sampling us-
ing the Markov Chain Monte Carlo (MCMC) technique with the No-
U Turn Sampler (NUTS). For all the models, all parameters achieved
a Gelman-Rubin statistic (a measure of MCMC convergence) of 1.0,
indicating that the multiple sampling chains converged [25].

1More precisely, we model the data as a Binomial distribution and the distribution’s
probability parameter as a logistic regression.
2A log transform also helps ensure additivity and linearity among predictors [24].
Model 3 models the transformed data as a normal distribution and the distribution’s
mean parameter as a linear regression.
3Besides the advantages gained in the way we set priors, Bayesian modeling also
provides transparency about the model’s assumptions and the ability for future re-
searchers to incorporate our findings into their priors. Kay et al. further elaborate on
the advantages of Bayesian inference in HCI in [39]. König and van de Schoot similarly
advocate for a Bayesian approach in the educational research context in [41].
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Table 2: Descriptive statistics of the dependent variables and independent variables by experiment setting and decision class in
our full sample. Note that the proportion of FPs and FNs in the sample is inflated compared to that of the autograder used in
the course.

Setting Interview Survey

Decision Class TP TN FP FN TP TN FP FN

# Instances 51 94 50 37 57 88 52 19
% Accurately assessed

correctness of own answer 98.04 68.09 32.00 78.37 100.00 77.27 3.85 52.63

% Correct on post-test 78.43 37.23 28.00 72.97 77.19 31.82 9.62 31.58
Seconds on feedback

[Median] 19.41 26.31 25.92 31.37 4.17 8.78 6.77 14.35

Perceived FPR (%)
[Mean (SD)] 11.31 (9.98) 10.47 (8.34)

Perceived FNR (%)
[Mean (SD)] 36.93 (25.62) 29.31 (24.10)

4.9 Thematic extraction from interviews and
open-ended survey responses

In general, we used an iterative open coding process to inductively
generate themes that had relevance to the three outcome measures
of the RQs – engagement with feedback, ability to assess the au-
tograder’s feedback accurately, and learning. We examined four
types of qualitative data: (1) open-ended survey responses about
participants’ usual habits on the feedback, (2) general themes from
the interview transcripts, (3) reasons why interviewees disagreed
with the autograder’s decision (61 instances), and (4) paired pre-
and post-test responses.

The exact analysis process varied by the type of data and ques-
tions we wanted to answer. Overall, for data types 1, 2, and 3, two
or more team members conducted the coding process and created
a separate codebook for each data type. For data type 4, a course
instructor performed the analysis. For more details, please see the
supplementary materials.

5 RESULTS
In this section, we first introduce how to interpret our Bayesian
model results. Then, we present the learning impacts of FPs and
explanations for the effects, followed by the same for FNs.

5.1 Effect Sizes and Statistical Significance
We describe the effect of autograder errors (RQ1, 2a, 3a) by report-
ing our models’ predictions of what would have happened if the
autograder had graded a problem instance correctly. Namely, this
compares FPs to TNs and FNs to TPs. As an example, we describe
the effect of FPs on learning (RQ1) compared to the effect of TNs.
In this paper, we express all effects on binary outcomes as an odds
ratio [11], so an effect size of 2 means that participants were twice
as likely to answer correctly on the post-test after FPs compared to
TNs; 0.5 means half as likely, etc.

We discuss the relationships among feedback engagement time,
accurate answer assessment, and class performance (RQs 2b, 3b,
and 3c) slightly differently. We report effects among these three
outcome measurements given that a FP or FN happened, which re-
flects our interest in the downstream effects of autograder errors.
Conditional on FP or FN, effects can be interpreted similarly to tra-
ditional regression coefficients: the relative (proportional) change
in a DV given a unit change in the IV. The unit of change for en-
gagement time is the sample standard deviation of 𝑙𝑜𝑔(time_spent).
A unit change in the remaining binary variables (assessed answer
correctly, student performance) means switching from one level to
the other. For example, given a FP, we examined whether success-
fully recognizing one’s own response as wrong influenced learning
outcomes. Again using an odds ratio, an effect size of 2 means that
compared to not detecting the FP, detecting the FP doubled the
odds of writing a correct post-test answer.

For each effect, our Bayesian formulation provides a posterior
distribution expressing a range of likely effect sizes. We report the
mean of this distribution and the boundaries of the 94% Highest
Posterior Density Interval (HPDI) – the narrowest interval contain-
ing 94% of the probability mass.4 We declare statistical significance
(i.e., a causal effect exists) when the entire HPDI lies outside of the
reference value of 1 – that is, when the proportional change in DV
caused by a unit change of an IV is highly likely to be different than
1.

5.2 Total effect of FPs on Learning (RQ1)
Marking an incorrect answer as right reduced the likelihood
of a correct post-test answer. Out of all four decision classes,
Model 1 predicts that participants who experienced a FP during a
practice question were the least likely to answer a perturbed version
of the same question correctly later (Figure 3). Erroneously marking
an incorrect answer as right instead of wrong (FP vs. TN) while
4We selected 94% as a relatively strict yet arbitrary norm, just as how p-value < 0.05 is
arbitrary.
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Figure 3:Main findings: Participants were worst at getting the post-test question right after experiencing FPs, regardless of
survey or interview. Given a correct answer during the practice session, being erroneously marked wrong (FN) predicted worse
learning outcomes compared to being marked right (TP). But on the interview, the outcomes between FNs and TPs were about
the same. Reading the figures: Each figure contains the posterior distributions of the predicted probability of a correct post-test
response, one for each decision class (FN/FP/TN/TP). Each curve is constructed from 15,000 posterior distribution samples. The
more concentrated to the left a distribution is, the lower the inferred learning outcome for that decision class.

holding all else constant decreased the predicted chance of a correct
post-test answer from a mean of 40.3% to 28.8% in the interview.
The reduction is statistically significant with a small effect size (FP
vs. TN odds ratio posterior: M = 0.58, 94% HPDI = [0.41, 0.74])5.
The effect is larger in the survey with a small to medium effect size
(FP vs. TN odds ratio posterior: M = 0.36, 94% HPDI = [0.23, 0.48]),
where the drop is from 37.2% to 16.3%.

Qualitatively, participants that wrote an incorrect post-test re-
sponse after a FP often failed to fix their mistakes from the practice
questions. There were 91 such instances of a wrong answer after a
FP. In 55 of these instances (60%), the participants either made the
same mistake in the post-test as they did during the practice ques-
tions or wrote an answer that contained more errors. In another 26%
of the instances, the participants wrote improved post-test answers,
but failed to fix every mistake. Participants in the remaining cases
(14%) wrote post-test answers that would have been correct if they
were written for the pre-test question, possibly due to memoriza-
tion of exemplar answers in the feedback or an assumption that
questions in the pre-test and post-test were identical.

5.3 Explanations of FPs’ learning harm (RQ2 &
RQ3)

We found that FPs harmed learning. Now, we describe how par-
ticipants’ engagement time and ability to detect autograder errors
explain this effect. Figure 4 summarizes these explanations, which
we detail below.

5We interpreted the magnitudes of odds ratios based on Chen et al. [16], where odds
ratios of 1.68, 3.47, and 6.71 are equivalent to Cohen’s d = 0.2 (small), 0.5 (medium),
and 0.8 (large), respectively. If an odds ratio is less than 1, we take the inverse of the
odds ratio before assessing its magnitude.

5.3.1 FPs and engagement time (RQ3a). Participants spent less
time on their wrong answers because of FPs, according to
our causal inference from Model 3 (Figure 4, Decision Class →
Engagement Time, effect size expressed as ratio of engagement
time). Figure 5 displays an intuitive comparison of the absolute
effect sizes. In surveys, for example, FPs contributed an average
reduction of 1.4 seconds with respect to 4.8 seconds of average time
spent on TNs.

We observed interviewees often skipping or skimming feedback
when receiving positive feedback from the autograder, and many
participants reported they had similar skipping habits on home-
work. Interviewees also often cited confidence in the response they
wrote as a reason for skipping feedback. Of course, skipping feed-
back was only appropriate if one actually wrote a correct response.
These findings suggest that negative feedback would have moti-
vated participants to examine all the feedback, or at least doubt
their answers.

5.3.2 FPs and error detection (RQ2a, 3b). The isolation of the FP
distribution in Figure 6 shows that participants assessed FPs the
least accurately among all decision classes. Given an interviewee
wrote an incorrect answer, Model 2 predicts that they acknowledged
the mistake with a 73% probability when properly marked wrong
(TN) and 37% probability when erroneously marked right (FPs), a
drop of 36%. The equivalent drop in the survey is larger, from 75% to
20%. The difference between TNs and FPs is statistically significant
with a medium to large effect size (FP vs. TN odds ratio posterior;
Interview: M = 0.35, 94% HPDI = [0.24, 0.47]; Survey: M = 0.14, 94%
HPDI = [0.07, 0.22]).

Model 4 confirms that engagement with feedback played an
essential role in detecting FPs.We found a statistically significant
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Figure 4: Annotated causal diagrams summarizing effects given an FP and separated by experimental setting (survey vs
interview). All the effects in our main DAG are statistically significant except for Engagement Time→ Learning Outcome. Each
edge describes the posterior distribution of the effect size, including mean (“M=”) and the boundaries of the 94% HPDI (numbers
in brackets) – see Section 5.1 for a detailed explanation. A solid arrow indicates a statistically significant effect; a dashed arrow
indicates no statistically significant effect. Between survey and interview, effect sizes differ but statistical significances remain
the same.

positive relationship between engagement time and detecting FPs
with a small effect size (Figure 4, Engagement Time → Thinks
Own Answer Is Wrong). In other words, engaging for a shorter
duration lowered the odds of assessing one’s answer accurately
when encountering a FP. As an example, P22 noted during one
problem where they received a positive mark that usually I don’t
read the correct answer examples. ... If I hadn’t read [the exemplars],
I would have been like, “Okay, sweet, I’m right.” ... I would have not
realized [that I was wrong].

In addition, FPs directly lowered the probability for partici-
pants to admit their incorrectness with a medium to large effect
size (Figure 4, Decision Class → Thinks Own Answer Is Wrong).
This suggests that FPs biased participants against recognizing their
errors, even when a FP did not change the duration of feedback
engagement. Indeed, we observed many instances of interviewees
agreeing with the autograder during FPs even after reading the
feedback, which represented missed learning opportunities. In one
category of agreement, participants claimed conceptually incorrect
answers matched the exemplars. Many simply said their response
was “similar” to the exemplars, suggesting a focus on superficial
similarities while having a very limited understanding of the ex-
emplar answers. In another type of agreement, participants wrote
conceptually correct answers that contained too much ambiguity
to be considered fully correct. These participants claimed their re-
sponses were similar to the exemplars’ meaning or essence, but
these claims implicitly or explicitly carried ignorance, neglect, or
disagreements with the class standards surrounding the use of clear,
high-level language.

5.3.3 Learning effects of engagement time and accurate answer as-
sessment in the context of FPs (RQ2b, 3c). Detection of FPs en-
hanced learning outcomes. Admitting that one’s incorrect re-
sponse was wrong given a FP had a small to medium positive effect
on learning outcomes (Figure 4, Thinks Own Answer Is Wrong →
Learning Outcome). But given that one failed to realize mistakes
in their response, FPs decreased learning outcomes more than TNs
with a small to medium effect size (Figure 4, Decision Class →
Learning Outcome). In other words, FPs not only decreased the
likelihood of detecting mistakes in one’s answer, but also worsened
the consequences of failing the detection.

Engagement time impacted learning outcomes by influ-
encing the ability to detect errors. Given a FP happened, we
found no statistically significant direct link between engagement
time and learning outcomes (Figure 4, Engagement Time → Learn-
ing Outcome). This leaves only the indirect causal path that Figure
4 illustrates: FP → decreases engagement time → lowers error
detection likelihood→ worsens learning outcome.

A summary of the mechanism behind FP’s learning impact:
FP’s learning harm occurs through several causal paths simultane-
ously.

• Less engagement: Participants spent significantly less time
on FPs than TNs, decreasing their odds of recognizing that
their answers were wrong and thus leading to worse perfor-
mance on the post-test question.

• Bias against recognizing one’s error: Even controlling for
engagement time, participants still had significantly lower
odds of admitting that their answer was wrong for FPs than
TNs.
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Figure 5: Main findings: when participants wrote a wrong answer, erroneously marking them right (FP) decreased engagement
time compared to marking them wrong (TN). When they wrote a right answer, erroneously marking them wrong (FN) increased
engagement times compared to marking them right (TP). Participants overall spent more time on the feedback in interviews
than in surveys. Reading the figures: Each figure contains the posterior distributions of predicted feedback engagement times,
one for each decision class (FN/FP/TN/TP). Each curve is constructed from 15,000 posterior distribution samples. The more
concentrated to the left a distribution is, the shorter the inferred engagement time for that decision class.
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Figure 6:Main findings: the distributions representing FPs lie on the left side, indicating participants failed to give a correct
assessment of their answers (i.e., recognize their errors) more than any other autograder decision outcome. Participants had
a similar probability of accurately assessing FNs and TNs. They very readily accepted TPs. Reading the figures: Each figure
contains the posterior distributions of the predicted probability of accurately assessing one’s answer’s correctness, one for each
decision class (FN/FP/TN/TP). Each curve is constructed from 15,000 posterior distribution samples. The more concentrated
to the right a distribution is, the better the inferred ability of participants to assess the correctness of their answer for that
decision class.
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• More harmful when failing to recognize one’s error:
Failing to acknowledge a response’s incorrectness lowered
learning outcomes. FPs amplified this effect compared to
TNs.

5.4 Total effect of FNs on learning (RQ1)
Previously, we described the effects of FPs, or wrong answers
marked as right. Now, we describe FNs. Marking a correct an-
swer as wrong (FN) reduced learning outcomes in the survey
but not in the interviews. In the interview, Model 1 predicts that
participants, on average, answered the post-test question correctly
with a 61.7% probability after experiencing FNs (Figure 3), not sig-
nificantly different from the 67.1% probability after experiencing
TPs (FN vs. TP odds ratio posterior: M = 1.01, 94% HPDI = [0.67,
1.37]). But on the survey, the model predicts 36.3% for FNs and
67.0% for TPs. This difference is statistically significant with a small
to medium effect size (FN vs. TP odds ratio posterior: M = 0.29, 94%
HPDI = [0.18, 0.41]).

Our qualitative observations detail how FNs had a limited impact
on post-test performance. During the interviews, when participants
explicitly expressed they thought they were wrong when they were
actually right, none of them thought they had written a response
with conceptual issues. Instead, they mostly identified neutral word-
ing differences between their answers and the exemplar answers
that they thought made their answers violate a class standard (e.g.,
their language was too low-level or contained ambiguity). Out of
the 23 instances of FNs in which the post-test answers became
incorrect, all except one demonstrated a correct conceptual under-
standing of the code.

Still, FNs could result in incorrect beliefs surrounding answer
construction. One such example was P17, who said I saw I was
wrong, so I read every possible other way I could describe the code ... I
realized I didn’t have to include “from list x.” However, this directly
contradicted the class standards requiring specificity about the
inputs to the code, and “from list x” provided exactly this specificity.
Later, P17 got the post-test version of the problem wrong because
they did not specify a precise input.

5.5 Explanations of FN’s learning harm (RQ2 &
RQ3)

As a reminder, we found FNs impacted learning only on the survey.
Similar to our method for FPs, we examined how engagement time
and the ability to detect the autograder’s errors explain this effect.
Figure 7 summarizes our findings, which we detail below.

5.5.1 Ability to detect FNs and learning impact (RQ2a, 2b). FNs
often caused participants to conclude their correct answers
were wrong, but with no significant learning impact. Com-
pared to TPs, FNs overall reduced the odds of concluding one’s
correct answer was correct with a medium to large effect size (Fig-
ure 6; FN vs. TP odds ratio posterior; Interview: M = 0.13, 94% HPDI
= [0.08, 0.20]; Survey: M = 0.11, 94% HPDI = [0.05, 0.19]). However,
Model 5 found no statistically significant relationship between de-
tecting FNs and post-test outcomes (Figure 7, Thinks Own Answer
Is Right→ Learning Outcome). But as our example in Section 5.4
reveals, failing to detect FNs could still have negative impacts in

some cases. We interpret the statistical result as describing a neutral
effect on learning outcomes in most cases.

5.5.2 FN and engagement time (RQ3a, 3b, 3c). FNs increased en-
gagement time, but engagement time had no statistically
significant learning impact. Compared to TPs, FNs increased
predicted average engagement time by 133% on the survey and 34%
on the interviews (Figure 7, Decision Class→ Engagement Time,
effect size expressed as ratio of engagement time). Participants
spent a similar amount of time on FNs as TNs (Figure 5) – in other
words, participants tended to spend time on FNs as if their correct
answers were actually wrong.6

Yet, we found no statistically significant link between engage-
ment time and learning outcome in the context of FNs (Figure 7,
Engagement Time→ Learning Outcome). We did find a significant
link between engagement time and the ability to accurately assess
one’s answer as correct in the interviews (Figure 7, Engagement
Time → Thinks Own Answer Is Right), but as discussed above,
detecting FNs had no statistical relationship to learning outcomes.

5.5.3 A direct negative effect of FNs on learning. According to
Model 5, neither engagement time nor error detection ability ex-
plain the negative influence of FNs on survey learning outcomes,
and thus a “direct” effect of FNs remains (Figure 7, Decision Class
→ Learning Outcome). The mean of this effect, 0.25, represents a
medium effect size. We expand on possible explanations for this di-
rect effect and why it only happened in the survey in our discussion
section.

A summary of the mechanism behind FN’s learning impact:
Neither engagement time with feedback nor the detection of FNs
explains the impact. A direct negative effect of FNs on learning in
the survey remains.

5.6 How student performance moderates
autograder errors’ learning harm (RQ4)

In the previous sections, we described the main learning effects of
FPs and FNs, and focused on engagement time and the ability to
detect autograder errors as explanations. Now, we describe how
these learning effects and explanations differed by student perfor-
mance. This section primarily utilizes Models 1, 2, 3, and 5 (Table
1), which included interaction effects with self-reported grades, a
proxy for student performance.

5.6.1 How learning harms of autograder errors differed by class per-
formance. Unsurprisingly, lower self-reported class performance
predicted lower post-test scores, regardless of whether the auto-
grader made an error. But whether autograder errors harmed lower-
performers’ learning more than higher-performers’ learning is a
different matter. Student performance did not significantly mod-
erate the learning impact of FNs or FPs – except in one case. On
the survey only, FPs harmed higher-performers’ learning
outcomes slightly more than lower-performers. Compared
to TNs, higher-performers’ predicted post-test accuracy dropped

6Our model actually predicts a statistically significant difference in time spent between
FNs and TNs, but the practical difference is small – 1 to 3 seconds. In the survey setting,
this can be explained by the time taken to click the “report” button for FNs.
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FN, Interview Condition

Positive effect (vs. TP)
[1.23, 1.45], M=1.34

Negative effect (vs. TP)
[0.04, 0.13], M=0.08

Positive effect
[1.04, 1.50], M=1.25

No significant effect
[0.82, 1.21], M=1.02

No significant effect
[0.72, 1.61], M=1.14

Thinks own answer is right:
No significant effect (vs. TP)

[0.85, 1.85], M=1.31
Thinks own answer is wrong:
No significant effect (vs. TP)

[0.70, 2.21], M=1.42

Decision Class:
FN

Engagement Time
on Feedback

Thinks Own
Answer Is Right

Learning Outcome

FN, Survey Condition

Positive effect (vs. TP)
[2.11, 2.53], M=2.33

Negative effect (vs. TP)
[0.01, 0.09], M=0.05

No significant effect
[0.90, 1.34], M=1.12

No significant effect
[0.88, 1.32], M=1.09

No significant effect
[0.85, 2.20], M=1.49

Thinks own answer is right:
Negative effect (vs. TP)

[0.11, 0.38], M=0.24
Thinks own answer is wrong:

Negative effect (vs. TP)
[0.09, 0.44], M=0.25

Decision Class:
FN

Engagement Time
on Feedback

Thinks Own
Answer Is Right

Learning Outcome

Figure 7: Annotated causal diagrams, describing effects given an FN and separated by experimental setting (survey vs interview).
In the interviews, our models found that neither FNs nor any mediating factors significantly affected learning outcomes. In
the survey, FNs only affected learning outcomes when participants failed to detect them. Each edge describes the posterior
distribution of the effect size, including mean (“M=”) and the boundaries of the 94% HPDI (numbers in brackets) – see Section
5.1 for a detailed explanation. A solid arrow indicates a statistically significant effect; a dashed arrow indicates no statistically
significant effect.

from an average of 45% to 19%, a 26% difference; lower-performers’
dropped from 24% to 11%, a 13% difference.

5.6.2 Student performance, engagement time, and the ability to
assess answers correctly. We found no statistically significant in-
teraction effects related to engagement time. For autograder error
detection, we examined three aspects: (1) how class performance
explained the overall ability to assess one’s answer accurately, (2)
whether encountering an autograder error impaired higher and
lower-performing participants’ judgments equally, and (3) whether
error detection had differential downstream effects on how likely
one learned depending on one’s performance.

For the first aspect, lower-performers were more likely to judge
correctly whether their answers were right or wrong with a small
effect size (Odds ratio comparing higher vs. lower-performers; FP:
M = 0.68, 94% HPDI = [0.49, 0.88]; FN: M = 0.62, 94% HPDI = [0.39,
0.84]). This translates to an absolute difference in probabilities of
about 5-10% – for example, lower-performing survey participants
detected FPs with an average chance of 28%, vs. 18% for higher-
performers.

For the second aspect, we found no significant interaction effects.
For instance, comparing TNs to FPs given one wrote a wrong an-
swer, FPs lowered the odds of recognizing one’s mistakes by about
50% for everybody.

Lastly, we found that the detection of autograder errors benefited
higher-performers’ learning more than lower-performers, with a
small effect size. In these conditions, higher-performers on average
had a 43% higher chance to answer a post-test question correctly
(Odds ratio comparing higher vs. lower performers: 94% HPDI =
[1.00, 1.95]).

5.6.3 A special case of a low performer. While we made no system-
atic comparisons of behavior or themes between interviewees of
different self-reported grades, one case stood out. P4 demonstrated
a much lower understanding of Python code than the other par-
ticipants and wrote only incorrect answers, both on the practice
questions and post-test. They said that they gained little from the
feedback, even when acknowledging their answer was wrong: I
read the answers and they’re not what I put, so yeah. I guess I under-
stand it a little bit, but not really. Later, their compared reading the
autograder’s feedback to listening to a lecture: If I were to learn this
stuff, I have a better time with my tutor one-on-one ... ’Cause that
way I can talk it through with somebody who actually knows what
they’re doing, instead of just listening to [a lecture].

P4 admitted they did not have the knowledge to tell whether the
grader was correct. This caused them to agree with the autograder
by default, including during FPs. But even if they had assessed their
answer correctly, P4’s general interaction with the autograder’s
feedback suggests they still would be unlikely to learn.

6 DISCUSSION AND FUTUREWORK
Based on our findings, we propose suggestions to improve the
design and workflow of the ASAG used in our experiment, as well
as other ASAGs that rely on a similar style of feedback. Additionally,
we use our findings to motivate future work in AI feedback systems
more broadly.
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6.1 Managing Wrong Answers Marked as
Correct (FPs)

We found two primary drivers that decreased the likelihood that
participants detected FPs, resulting in learning harms. The grader’s
positive mark caused 1) participants to not pay attention to feed-
back, and 2) a bias against admitting mistakes in their answers.
One proposal to mitigate the first driver is to increase attention
to FPs, such as by warning students that FPs exist, as prior work
found many of them were unaware [33], or providing incentives
like extra credit to those that identify FPs. Yet, examining a positive
mark acts against students’ instincts, and not everybody responds
to such incentives. Moreover, we wish to avoid students not gaining
anything after examining feedback on contents they already know
well.

Instead of incentivizing engagement with positive feedback all
the time, we advocate for a more selective approach. We suggest
prioritizing higher-performing students, as we found that they de-
tected FPs less compared to lower-performers on the survey. We
further hypothesize that higher-performers were more confident
in their answers and therefore believed the autograder more when
marked as correct. If this is true, then we recommend incentivizing
engagement for students that display unwarranted confidence. Fu-
ture work can explore other groups of students and test the efficacy
of encouraging engagement with positive feedback in mitigating
harm from FPs.

Another suggestion, which may also help overcome bias against
admitting one’s own mistakes, is to increase detail in positive feed-
back. Detailed positive feedback in our context could explain how a
response fulfills class standards and expresses important concepts,
such as Check successful: the autograder thinks your answer unam-
biguously specifies the inputs when it says “list x.” This will increase
the visibility of contradictions caused by autograder errors and
directly addresses participants’ habits of shallow comparison with
the exemplar answers. Furthermore, detailed positive feedback can
help students confirm their knowledge even when their answers
are truly correct, improving learning [51].

6.2 Managing Right Answers Marked as
Incorrect (FNs)

Unlike interview participants, survey participants were less likely
to answer post-test questions correctly after a FN. This effect was
explained neither by variations in engagement time within each
group of participants, nor by participants’ failures to assess their
answers as correct. With those explanations ruled out, we propose
that the guided reflection process unique to the interviewees pro-
tected them from learning harms. Interviewees had to describe
their use of the feedback and articulate why they thought their
answer was right or wrong. Such back-and-forth engagement, with
many elements of the reflect when prompted technique, could have
increased students’ cognitive engagement and encouraged extra
metacognition. While the benefits of these processes for learning
outcomes are well-known [7], our findings now suggest the addi-
tional tangible benefit of reducing harm from grading errors.

An implementation of the reflect when prompted technique could
ask students who are confused with an autograder’s wrong mark to

externalize their reflection on why they think their answer is cor-
rect and how it meets the class standards by completing a checklist
of criteria that correct responses must fulfill [55]. Another approach
involves rethinking workflows around the autograder – designing
an online forum to discuss AI output with others (e.g., peers), simi-
lar to Duolingo’s discussion pages for machine-graded translation
tasks. We leave the implementation and comparison of various
strategies to future work.

6.3 Deciding FN vs. FPs Trade-off in AI Short
Answer Autograding

Classifiers inherently make trade-offs; decreasing the FP rate usu-
ally increases the FN rate, and vice-versa. Common sense dictates
that the ratio of FPs versus FNs should be guided by the goal of the
AI application and the consequences of errors. Here we describe
how educators may use our findings to inform their decisions.

First, we observe that after experiencing FNs, no interviewees
expressed incorrect coding concepts, and participants’ post-test
responses were often incorrect because of unsuccessful reword-
ing attempts, such as attempts that used less-specific language. In
contrast, FPs prevented participants from correcting their concep-
tual errors in many cases. In other words, FPs harmed conceptual
understanding more than FNs.

Second, our suggestions for mitigating FNs already match best
practices for engaging with feedback. But mitigating FPs seems
more challenging because of the need to work against students’
tendencies to disengage with feedback and their bias against ad-
mitting their errors after receiving a positive mark. Additionally,
encouraging engagement with FPs may risk having students gain
nothing from studying content they already know well with TPs.

And finally, prior work on a similar AI autograder suggested that
students look upon FNs in low-stakes assessments more leniently
than FNs in high-stakes assessments [33]. Thus, as long as AI is
deployed in low-stakes formative assessments, instructors have
some leeway in biasing towards a higher ratio of FNs while keeping
students reasonably satisfied.

Considering all of the above, when mastering course materials
is the primary goal, such as our study’s formative setting within a
for-credit course in secondary education, we suggest prioritizing
the reduction in FP rate. At the same time, we recommend lever-
aging common mechanisms of formative assessments [10, 15, 68]
to reduce dissatisfaction with FNs [33]. Notably, without evidence
from our study, the instructors of the course in our study chose the
opposite – to reduce FPs, since students’ dissatisfaction with FNs
was more apparent and well-understood than the harms from FPs.
Taken as a case study, our study shows the limitations of intuition
and the need for empirical evaluation of the impact of FPs and
FNs. In other contexts with different stakes and priorities, such as
when boosting learners’ curiosity and motivation takes priority
over mastery, we encourage educators to take a similar approach
to the one we have taken to make FP-FN trade-off decisions.

6.4 Designing for Different Student Populations
We found no evidence that autograder errors harmed lower-performing
students more than higher-performing students, contrary to our
original hypothesis. In fact, higher-performers had a bigger absolute
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decrease in learning outcomes after experiencing a FP in the survey
condition. We acknowledge the possibility that lower-performers’
learning outcomes were already low enough to limit the magnitude
of further drops. However, higher-performing participants still had
more trouble accurately assessing their answers’ correctness, which
caused lower learning outcomes for FPs. Thus we suggested tar-
geted interventions to help higher-performers detect FPs in Section
6.1.

Lower-performers, on the other hand, overall assessed their an-
swers’ correctness more accurately. But when both lower- and
higher-performers accurately assessed their answers, lower-performers
were less likely to learn. As the example in Section 5.6.3 suggests,
detecting an autograder error does not matter if the student cannot
learn from the provided feedback. In other words, lower-performers
do not need as much help detecting autograder errors, but could
benefit more from our before-mentioned suggestions for detailed
feedback (Section 6.1) and enhancing cognitive engagement (Sec-
tion 6.2).

Besides performance, prior work shows that students with differ-
ent self-efficacy, motivational beliefs [63], gender [64], etc., interact
with and learn from feedback differently. Hence, we encourage
future research to study how autograder errors impact these popu-
lations differently and consider these variations when designing AI
autograders to enhance fairness.

6.5 What About More Sophisticated AI
Autograders?

The ASAG in our study used a simple bag-of-words model. But
future ASAGs will likely be more sophisticated. Currently, we are
seeing much commentary on large language models (LLMs), such as
OpenAI’s ChatGPT [50] and Google’s BARD [27]. LLM technology
offers promise for autograders to provide human-like interactions
and detailed feedback. However, current designs of LLMs provide
no signals of which outputs could be false – people still need to
decide when and how much to trust the AI’s feedback. The fluency
of these responses may lead users to think that a human generated
the responses [35], masking their inaccuracies. Furthermore, LLM’s
false feedback may not cleanly fit into the categories of FPs and
FNs. Given the differential learning impacts of FPs and FNs in our
study, we call for future research to create a taxonomy for the errors
in LLM-generated feedback, examine how well users detect these
errors, and evaluate their learning impacts.

6.6 Deploying AI Ethically
Finally, we must point out that while we focused on how AI er-
rors affected learning in this paper, errors can harm other metrics
and pose other serious consequences. For instance, errors or the
potential of errors can prompt accusations of unfairness, such as
when officials decided to use an algorithm that may have dispro-
portionately benefited students from private schools to predict and
determine students’ A-level exam scores in the UK in 2020 [9]. In
short, even when we can mitigate the learning harms of AI errors
in contexts similar to our study, practitioners must still support
consistency, fairness, and robust appeal processes to ethically and
responsibly deploy AI in education.

7 LIMITATIONS
One limitation is that our dependent variables capture limited facets
of how students engaged and learned. We chose to measure time
spent on feedback due to its ease of measurement and objectiveness,
but it does not include nuances such as how participants spent their
time and how they engaged cognitively. We captured some of this
in the interviews, but future work should look at other types of en-
gagement more systematically. Likewise, our measure of “learning”
captured if participants corrected their mistakes on the practice
problems and whether they picked up new misconceptions. It did
not necessarily evaluate whether they gained a deep understand-
ing of code reading or writing. Future work should devise more
sophisticated measures of learning, such as longer-term learning
outcomes or skill transfer to code-writing ability and more.

Another limitation is that we derived our models of student
behavior and subsequent recommendations from an introductory
computer science class context and an autograding system used in
this class. We do not claim that our exact estimates of causal effects
will always generalize, especially in contexts with a significantly
different feedback design or subjects where the obviousness of
grading errors differs. Still, we believemost of our recommendations
are relevant in a broad sense, especially around how to deal with
FPs and how to determine FP-FN trade-offs, as we expect students
to feel less incentive to engage with positive feedback in many
contexts.

8 CONCLUSION
In this work, we investigated the impact of short-answer AI auto-
grader errors on learning, the mechanisms of the impacts, and how
the impacts differ according to student performance. We summarize
our key messages below:

• Help learners detect FPs. Suggestions include encouraging
engagement with positive feedback, especially for higher-
performers, and increasing detail in all positive feedback.

• Enhance students’ cognitive engagement and metacognition
to mitigate both FNs and FPs. One approach is to have learn-
ers articulate answers’ correct/incorrect aspects, either with
a tool or other humans (e.g., peers).

• Personalize interventions based on student performance.
Higher performers need more help with error detection,
while lower performers need more guidance on learning
from the feedback.

• Decrease the ratio of FPs to optimize for learning. This is
because FNs harmed our participants’ learning less than FPs,
and current knowledge and best practices suggest easier
mitigation for FNs.

• Empirically evaluate the effects of FPs and FNs. We demon-
strate the effectiveness of this approach in this paper, and
encourage similar evaluations when deploying AI educa-
tional systems in new contexts.

Looking forward, we recommend investigating the impact of
erroneous AI-provided feedback in other contexts as these systems
evolve and developing solutions to help learners get the most out
of the feedback despite AI errors.
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9 APPENDIX
9.1 Group 2 Confounders
These factors could reasonably and simultaneously predict engage-
ment with feedback, beliefs about the correctness of one’s response,
and/or learning outcomes. We present reasonings and evidence that
each confound affects at least two of these outcomes.

(1) Task-value belief. Prior work found that the perceived value
of a task predicted the effort participants invested in a formative
assessment about that task and feedback-seeking behavior [63].

(2) Task success expectancy. People’s perceptions of their
likelihood to do well on a task predicts feedback-seeking behavior
[63].

(3) Goal orientation. Prior work found that learning goal ori-
entation predicts feedback-seeking behaviors, and a performance-
avoidance goal orientation negatively predicts feedback-seeking
behavior [65].

(5) Gender. Empirical evidence suggests that gender affects
feedback usage and subsequent learning [46, 54].

(6) English proficiency. We reasoned that people less profi-
cient in English would take longer to read the feedback. At the
same time, we reasoned people less proficient in English may have
more difficulty in constructing answers to EiPE problems. (Notably,
participants in [33] had the same concern.)

(7) Prior trust of the autograder. This intuitively affects beliefs
about the correctness of one’s response after seeing autograder
feedback, and we also reasoned that participants could ignore or
skip feedback if they did not trust it.

(8a and 8b) In-experiment autograder behavior. Perceptions
and trust of the autograder could change as students see the auto-
grader’s output in the experiment. We model autograder behavior
with (A) the number of questions that have been marked as cor-
rect up to the current question and (B) the number of mistakes the
autograder has made so far.
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